Practical Federated Learning Infrastructure for Privacy-Preserving Scientific Computing

Lesi Wang, Dongfang Zhao
{"title":"Practical Federated Learning Infrastructure for Privacy-Preserving Scientific Computing","authors":"Lesi Wang, Dongfang Zhao","doi":"10.1109/AI4S56813.2022.00012","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is deemed a promising paradigm for privacy-preserving data analytics in collaborative scientific computing. However, there lacks an effective and easy-to-use FL infrastructure for scientific computing and high-performance computing (HPC) environments. The objective of this position paper is two-fold. Firstly, we identify three missing pieces of a scientific FL infrastructure: (i) a native MPI programming interface that can be seamlessly integrated into existing scientific applications, (ii) an independent data layer for the FL system such that the user can pick the persistent medium for her own choice, such as parallel file systems and multidimensional databases, and (iii) efficient encryption protocols that are optimized for scientific workflows. The second objective of this paper is to present a work-in-progress FL infrastructure, namely MPI-FL, which is implemented with PyTorch and MPI4py. We deploy MPI-FL on 1,000 CPU cores and evaluate it with four standard benchmarks: MNIST, Fashion-MNIST, CIFAR-10, and SVHN-extra. It is our hope that the scientific computing and HPC community would find MPI-FL useful for their FL-related projects.","PeriodicalId":262536,"journal":{"name":"2022 IEEE/ACM International Workshop on Artificial Intelligence and Machine Learning for Scientific Applications (AI4S)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on Artificial Intelligence and Machine Learning for Scientific Applications (AI4S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4S56813.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Federated learning (FL) is deemed a promising paradigm for privacy-preserving data analytics in collaborative scientific computing. However, there lacks an effective and easy-to-use FL infrastructure for scientific computing and high-performance computing (HPC) environments. The objective of this position paper is two-fold. Firstly, we identify three missing pieces of a scientific FL infrastructure: (i) a native MPI programming interface that can be seamlessly integrated into existing scientific applications, (ii) an independent data layer for the FL system such that the user can pick the persistent medium for her own choice, such as parallel file systems and multidimensional databases, and (iii) efficient encryption protocols that are optimized for scientific workflows. The second objective of this paper is to present a work-in-progress FL infrastructure, namely MPI-FL, which is implemented with PyTorch and MPI4py. We deploy MPI-FL on 1,000 CPU cores and evaluate it with four standard benchmarks: MNIST, Fashion-MNIST, CIFAR-10, and SVHN-extra. It is our hope that the scientific computing and HPC community would find MPI-FL useful for their FL-related projects.
保护隐私科学计算的实用联邦学习基础结构
联邦学习(FL)被认为是协作科学计算中保护隐私的数据分析的一个有前途的范例。然而,对于科学计算和高性能计算(HPC)环境,缺乏一个有效且易于使用的FL基础架构。本立场文件的目标是双重的。首先,我们确定了科学FL基础设施的三个缺失部分:(i)可以无缝集成到现有科学应用程序中的本机MPI编程接口,(ii) FL系统的独立数据层,以便用户可以根据自己的选择选择持久介质,例如并行文件系统和多维数据库,以及(iii)针对科学工作流程优化的有效加密协议。本文的第二个目标是介绍一个正在进行的FL基础设施,即MPI-FL,它是用PyTorch和MPI4py实现的。我们将MPI-FL部署在1,000个CPU内核上,并使用四个标准基准:MNIST、Fashion-MNIST、CIFAR-10和SVHN-extra对其进行评估。我们希望科学计算和高性能计算社区能够发现MPI-FL对他们的高性能计算相关项目有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信