Spontaneous thermal facial expression analysis based on trajectory-pooled fisher vector descriptor

Peng Liu, L. Yin
{"title":"Spontaneous thermal facial expression analysis based on trajectory-pooled fisher vector descriptor","authors":"Peng Liu, L. Yin","doi":"10.1109/ICME.2017.8019315","DOIUrl":null,"url":null,"abstract":"We present a new descriptor for spontaneous facial expression recognition from videos acquired by a thermal sensor. Previous descriptors mostly compute features from RGB videos. It is difficult to process mixed and varied spontaneous expressions with a large ambiguity of facial appearances. In contrast, thermal imaging can measure autonomic activities, which are the physiological changes evoked by the autonomic nervous system regardless of the variety and ambiguity of facial appearances. This paper presents a new thermal video representation as so-called trajectory-pooled fisher vector descriptor (TFD). To get the local energy and temperature changes, we propose to use spatio-temporal orientation energy and acceleration of dense trajectory as low level features and further improve the discriminative capacity by aggregating the local feature using an improved fisher vector. The benefits of TFD in comparison with existing approaches are illustrated in two databases using different modalities: USTC-NVIE database and MMSE (a.k.a. BP4D+) database.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a new descriptor for spontaneous facial expression recognition from videos acquired by a thermal sensor. Previous descriptors mostly compute features from RGB videos. It is difficult to process mixed and varied spontaneous expressions with a large ambiguity of facial appearances. In contrast, thermal imaging can measure autonomic activities, which are the physiological changes evoked by the autonomic nervous system regardless of the variety and ambiguity of facial appearances. This paper presents a new thermal video representation as so-called trajectory-pooled fisher vector descriptor (TFD). To get the local energy and temperature changes, we propose to use spatio-temporal orientation energy and acceleration of dense trajectory as low level features and further improve the discriminative capacity by aggregating the local feature using an improved fisher vector. The benefits of TFD in comparison with existing approaches are illustrated in two databases using different modalities: USTC-NVIE database and MMSE (a.k.a. BP4D+) database.
基于轨迹池fisher向量描述子的自发热面部表情分析
我们提出了一种新的描述符,用于从热传感器获取的视频中自动识别面部表情。以前的描述符主要是从RGB视频中计算特征。面部表情具有较大的模糊性,难以处理复杂多变的自发表情。相比之下,热成像可以测量自主神经活动,这是自主神经系统引起的生理变化,与面部外观的多样性和模糊性无关。本文提出了一种新的热视频表示,即所谓的轨迹池fisher矢量描述符(TFD)。为了获得局部能量和温度变化,我们提出将密集轨迹的时空方向能量和加速度作为低层特征,并利用改进的fisher向量对局部特征进行聚合,进一步提高判别能力。与现有方法相比,TFD的优势在使用不同模式的两个数据库中得到了说明:USTC-NVIE数据库和MMSE(又称BP4D+)数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信