Casen Hunger, L. Vilanova, Charalampos Papamanthou, Yoav Etsion, Mohit Tiwari
{"title":"DATS - Data Containers for Web Applications","authors":"Casen Hunger, L. Vilanova, Charalampos Papamanthou, Yoav Etsion, Mohit Tiwari","doi":"10.1145/3173162.3173213","DOIUrl":null,"url":null,"abstract":"Data containers enable users to control access to their data while untrusted applications compute on it. However, they require replicating an application inside each container - compromising functionality, programmability, and performance. We propose DATS - a system to run web applications that retains application usability and efficiency through a mix of hardware capability enhanced containers and the introduction of two new primitives modeled after the popular model-view-controller (MVC) pattern. (1) DATS introduces a templating language to create views that compose data across data containers. (2) DATS uses authenticated storage and confinement to enable an untrusted storage service, such as memcached and deduplication, to operate on plain-text data across containers. These two primitives act as robust declassifiers that allow DATS to enforce non-interference across containers, taking large applications out of the trusted computing base (TCB). We showcase eight different web applications including Gitlab and a Slack-like chat, significantly improve the worst-case overheads due to application replication, and demonstrate usable performance for common-case usage.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Data containers enable users to control access to their data while untrusted applications compute on it. However, they require replicating an application inside each container - compromising functionality, programmability, and performance. We propose DATS - a system to run web applications that retains application usability and efficiency through a mix of hardware capability enhanced containers and the introduction of two new primitives modeled after the popular model-view-controller (MVC) pattern. (1) DATS introduces a templating language to create views that compose data across data containers. (2) DATS uses authenticated storage and confinement to enable an untrusted storage service, such as memcached and deduplication, to operate on plain-text data across containers. These two primitives act as robust declassifiers that allow DATS to enforce non-interference across containers, taking large applications out of the trusted computing base (TCB). We showcase eight different web applications including Gitlab and a Slack-like chat, significantly improve the worst-case overheads due to application replication, and demonstrate usable performance for common-case usage.