{"title":"ECG-based affective computing for difficulty level prediction in Intelligent Tutoring Systems","authors":"Fehaid Alqahtani, Stamos Katsigiannis, N. Ramzan","doi":"10.1109/UCET.2019.8881872","DOIUrl":null,"url":null,"abstract":"Intelligent tutoring Systems (ITS) have emerged as an attractive solution for providing personalised learning experiences on a large scale. Traditional ITS are able to adapt the learning process according to the capabilities and needs of their users, but lack the capability to adapt to their affective/emotional state. In this work, we examine the use of electrocardiography (ECG) signals for detecting the affective state of ITS users. Features, extracted from ECG signals acquired while users undertook a computerised English language test, were used for the prediction of the self-reported difficulty level of the test's questions. Supervised classification experiments demonstrated the potential of this approach, achieving a classification F1-score of 61.22% for the prediction of the self-assessed difficulty level of the questions.","PeriodicalId":169373,"journal":{"name":"2019 UK/ China Emerging Technologies (UCET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 UK/ China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET.2019.8881872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Intelligent tutoring Systems (ITS) have emerged as an attractive solution for providing personalised learning experiences on a large scale. Traditional ITS are able to adapt the learning process according to the capabilities and needs of their users, but lack the capability to adapt to their affective/emotional state. In this work, we examine the use of electrocardiography (ECG) signals for detecting the affective state of ITS users. Features, extracted from ECG signals acquired while users undertook a computerised English language test, were used for the prediction of the self-reported difficulty level of the test's questions. Supervised classification experiments demonstrated the potential of this approach, achieving a classification F1-score of 61.22% for the prediction of the self-assessed difficulty level of the questions.