A. B. Ruighaver, R. F. Holt, J. Semkiw, A. Nirmalathas
{"title":"Optical 2-dimensional multiple-broadcasting for massively parallel multicomputers","authors":"A. B. Ruighaver, R. F. Holt, J. Semkiw, A. Nirmalathas","doi":"10.1109/MPPOI.1994.336617","DOIUrl":null,"url":null,"abstract":"The Melbourne University Optoelectronic Multicomputer Project is investigating dense optical interconnection networks capable of providing low-latency data transfer of 32 or 64 bits. The networks developed do not need any optical switches and are therefore suited for implementation with state-of-the-art optical technology. The research is concentrating on two-dimensional topologies that broadcast data between the processing elements in each row and in each column. The simulated performance of random data transfer patterns indicates that multiple broadcasting will be able to offer a cost-effective solution for low-latency interconnection networks in a massive parallel architecture. The question remains which implementation of multiple broadcasting will be the most successful.<<ETX>>","PeriodicalId":254893,"journal":{"name":"First International Workshop on Massively Parallel Processing Using Optical Interconnections","volume":"151 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Massively Parallel Processing Using Optical Interconnections","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MPPOI.1994.336617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Melbourne University Optoelectronic Multicomputer Project is investigating dense optical interconnection networks capable of providing low-latency data transfer of 32 or 64 bits. The networks developed do not need any optical switches and are therefore suited for implementation with state-of-the-art optical technology. The research is concentrating on two-dimensional topologies that broadcast data between the processing elements in each row and in each column. The simulated performance of random data transfer patterns indicates that multiple broadcasting will be able to offer a cost-effective solution for low-latency interconnection networks in a massive parallel architecture. The question remains which implementation of multiple broadcasting will be the most successful.<>