Mechanisation of Model-theoretic Conservative Extension for HOL with Ad-hoc Overloading

A. Gengelbach, Johannes Åman Pohjola, Tjark Weber
{"title":"Mechanisation of Model-theoretic Conservative Extension for HOL with Ad-hoc Overloading","authors":"A. Gengelbach, Johannes Åman Pohjola, Tjark Weber","doi":"10.4204/EPTCS.332.1","DOIUrl":null,"url":null,"abstract":"Definitions of new symbols merely abbreviate expressions in logical frameworks, and no new facts (regarding previously defined symbols) should hold because of a new definition. In Isabelle/HOL, definable symbols are types and constants. The latter may be ad-hoc overloaded, i.e. have different definitions for non-overlapping types. We prove that symbols that are independent of a new definition may keep their interpretation in a model extension. This work revises our earlier notion of model-theoretic conservative extension and generalises an earlier model construction. We obtain consistency of theories of definitions in higher-order logic (HOL) with ad-hoc overloading as a corollary. Our results are mechanised in the HOL4 theorem prover.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.332.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Definitions of new symbols merely abbreviate expressions in logical frameworks, and no new facts (regarding previously defined symbols) should hold because of a new definition. In Isabelle/HOL, definable symbols are types and constants. The latter may be ad-hoc overloaded, i.e. have different definitions for non-overlapping types. We prove that symbols that are independent of a new definition may keep their interpretation in a model extension. This work revises our earlier notion of model-theoretic conservative extension and generalises an earlier model construction. We obtain consistency of theories of definitions in higher-order logic (HOL) with ad-hoc overloading as a corollary. Our results are mechanised in the HOL4 theorem prover.
具有Ad-hoc过载的HOL模型理论保守扩展的机械化
新符号的定义仅仅是简化了逻辑框架中的表达式,没有新的事实(关于先前定义的符号)应该因为新的定义而成立。在Isabelle/HOL中,可定义的符号是类型和常量。后者可能是特别重载的,即对非重叠类型具有不同的定义。我们证明了独立于新定义的符号可以在模型扩展中保持其解释。这项工作修正了我们早期的模型理论保守扩展的概念,并推广了早期的模型构造。我们得到了高阶逻辑(HOL)中定义理论的一致性,并以自适应重载作为推论。我们的结果在HOL4定理证明中被机械化了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信