Periodic Pattern Formation Analysis Numerically in a Chemical Reaction-Diffusion System

A. Nazimuddin, Md. Showkat Ali
{"title":"Periodic Pattern Formation Analysis Numerically in a Chemical Reaction-Diffusion System","authors":"A. Nazimuddin, Md. Showkat Ali","doi":"10.5815/ijmsc.2019.03.02","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the pattern formation in a chemical reaction-diffusion Brusselator model. Twocomponent Brusselator model in two spatial dimensions is studied numerically through direct partial differential equation simulation and we find a periodic pattern. In order to understand the periodic pattern, it is important to investigate our model in one-dimensional space. However, direct partial differential equation simulation in one dimension of the model is performed and we get periodic traveling wave solutions of the model. Then, the local dynamics of the model is investigated to show the existence of the limit cycle solutions. After that, we establish the existence of periodic traveling wave solutions of the model through the continuation method and finally, we get a good consistency among the results.","PeriodicalId":312036,"journal":{"name":"International Journal of Mathematical Sciences and Computing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijmsc.2019.03.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we analyze the pattern formation in a chemical reaction-diffusion Brusselator model. Twocomponent Brusselator model in two spatial dimensions is studied numerically through direct partial differential equation simulation and we find a periodic pattern. In order to understand the periodic pattern, it is important to investigate our model in one-dimensional space. However, direct partial differential equation simulation in one dimension of the model is performed and we get periodic traveling wave solutions of the model. Then, the local dynamics of the model is investigated to show the existence of the limit cycle solutions. After that, we establish the existence of periodic traveling wave solutions of the model through the continuation method and finally, we get a good consistency among the results.
化学反应扩散系统周期模式形成的数值分析
本文分析了化学反应扩散Brusselator模型中模式的形成。通过直接偏微分方程模拟对二维双分量Brusselator模型进行了数值研究,得到了其周期模式。为了理解周期模式,在一维空间中研究我们的模型是很重要的。对该模型进行了一维的直接偏微分方程模拟,得到了该模型的周期行波解。然后,研究了模型的局部动力学性质,证明了极限环解的存在性。在此基础上,通过延拓法建立了模型周期行波解的存在性,最终得到了较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信