High performance VLSI architecture for data clustering targeted at computer vision

O. Hernandez
{"title":"High performance VLSI architecture for data clustering targeted at computer vision","authors":"O. Hernandez","doi":"10.1109/SECON.2005.1423226","DOIUrl":null,"url":null,"abstract":"This paper presents a high performance architecture for the important task of unsupervised data clustering in computer vision applications. This architecture is suitable for VLSI implementation, as it exploits paradigms of massive connectivity like those inspired by neural networks, and parallelism and functionality integration that can be afforded by emerging nanometer semiconductor technologies. By utilizing a \"global-systolic, local-hyper-connected\" architectural approach, this architecture can be suitable for the processing of real time DVD quality video at the highest rate allowed by the MPEG-2 standard. This implies a performance improvement of 118 times or better than approaches using conventional compute platforms.","PeriodicalId":129377,"journal":{"name":"Proceedings. IEEE SoutheastCon, 2005.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE SoutheastCon, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2005.1423226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a high performance architecture for the important task of unsupervised data clustering in computer vision applications. This architecture is suitable for VLSI implementation, as it exploits paradigms of massive connectivity like those inspired by neural networks, and parallelism and functionality integration that can be afforded by emerging nanometer semiconductor technologies. By utilizing a "global-systolic, local-hyper-connected" architectural approach, this architecture can be suitable for the processing of real time DVD quality video at the highest rate allowed by the MPEG-2 standard. This implies a performance improvement of 118 times or better than approaches using conventional compute platforms.
面向计算机视觉的高性能VLSI数据聚类体系结构
本文针对计算机视觉应用中的无监督数据聚类这一重要任务,提出了一种高性能的聚类体系结构。这种架构适合VLSI的实现,因为它利用了神经网络所激发的大规模连接范例,以及新兴纳米半导体技术所提供的并行性和功能集成。通过使用“全局收缩,本地超连接”的体系结构方法,该体系结构可以适用于以MPEG-2标准允许的最高速率处理实时DVD质量的视频。这意味着性能比使用传统计算平台的方法提高了118倍或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信