Leandro M. Rufail, Mohamed K. Emara, A. Ashoor, Shulabh Gupta
{"title":"Metasurface Reflector with Independent Polarizations Control using a Supercell Concept","authors":"Leandro M. Rufail, Mohamed K. Emara, A. Ashoor, Shulabh Gupta","doi":"10.1109/AP-S/USNC-URSI47032.2022.9887209","DOIUrl":null,"url":null,"abstract":"A novel supercell concept is proposed to control the amplitude and phase of a metasurface reflector, independently for the two orthogonal polarizations, and is numerically demonstrated. The supercell concept is based on a fundamental unit cell that operates on one linear polarization only, which when spatially rotated by 90°, can be used to respond to the other orthogonal polarization. By spatially combining the unit cell and its spatially rotated version, a super cell is formed which can impart a desired reflection amplitude/phase to each of the polarizations without affecting the other.","PeriodicalId":371560,"journal":{"name":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A novel supercell concept is proposed to control the amplitude and phase of a metasurface reflector, independently for the two orthogonal polarizations, and is numerically demonstrated. The supercell concept is based on a fundamental unit cell that operates on one linear polarization only, which when spatially rotated by 90°, can be used to respond to the other orthogonal polarization. By spatially combining the unit cell and its spatially rotated version, a super cell is formed which can impart a desired reflection amplitude/phase to each of the polarizations without affecting the other.