{"title":"Diffusion tensor magnetic resonance imaging","authors":"D. Sosnovik","doi":"10.1093/MED/9780198779735.003.0063","DOIUrl":null,"url":null,"abstract":"The microstructure of the heart has a major impact on its mechanical and electrical properties. Diffusion tensor magnetic resonance imaging (DTI) exploits the anisotropic restriction of water diffusion in the myocardium to resolve its microstructure. Recent advances in the field have included the development of acceleration-compensated diffusion-encoded sequences, the investigation of sheet dynamics, and the development of highly accelerated techniques to enable whole heart coverage. Translational studies have demonstrated the utility of DTI in heart failure and other cardiomyopathies. While DTI of the heart remains investigational, ongoing advances in the field will soon allow the technique to be performed reliably and quickly in appropriate clinical scenarios.","PeriodicalId":294042,"journal":{"name":"The EACVI Textbook of Cardiovascular Magnetic Resonance","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EACVI Textbook of Cardiovascular Magnetic Resonance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/MED/9780198779735.003.0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The microstructure of the heart has a major impact on its mechanical and electrical properties. Diffusion tensor magnetic resonance imaging (DTI) exploits the anisotropic restriction of water diffusion in the myocardium to resolve its microstructure. Recent advances in the field have included the development of acceleration-compensated diffusion-encoded sequences, the investigation of sheet dynamics, and the development of highly accelerated techniques to enable whole heart coverage. Translational studies have demonstrated the utility of DTI in heart failure and other cardiomyopathies. While DTI of the heart remains investigational, ongoing advances in the field will soon allow the technique to be performed reliably and quickly in appropriate clinical scenarios.