Distributed Coloring in Sparse Graphs with Fewer Colors

Pierre Aboulker, Marthe Bonamy, N. Bousquet, Louis Esperet
{"title":"Distributed Coloring in Sparse Graphs with Fewer Colors","authors":"Pierre Aboulker, Marthe Bonamy, N. Bousquet, Louis Esperet","doi":"10.1145/3212734.3212740","DOIUrl":null,"url":null,"abstract":"This paper is concerned with efficiently coloring sparse graphs in the distributed setting with as few colors as possible. According to the celebrated Four Color Theorem, planar graphs can be colored with at most 4 colors, and the proof gives a (sequential) quadratic algorithm finding such a coloring. A natural problem is to improve this complexity in the distributed setting. Using the fact that planar graphs contain linearly many vertices of degree at most 6, Goldberg, Plotkin, and Shannon obtained a deterministic distributed algorithm coloring n-vertex planar graphs with 7 colors in O(log n) rounds. Here, we show how to color planar graphs with 6 colors in polylog(n) rounds. Our algorithm indeed works more generally in the list-coloring setting and for sparse graphs (for such graphs we improve by at least one the number of colors resulting from an efficient algorithm of Barenboim and Elkin, at the expense of a slightly worst complexity). Our bounds on the number of colors turn out to be quite sharp in general. Among other results, we show that no distributed algorithm can color every n-vertex planar graph with 4 colors in o(n) rounds.","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper is concerned with efficiently coloring sparse graphs in the distributed setting with as few colors as possible. According to the celebrated Four Color Theorem, planar graphs can be colored with at most 4 colors, and the proof gives a (sequential) quadratic algorithm finding such a coloring. A natural problem is to improve this complexity in the distributed setting. Using the fact that planar graphs contain linearly many vertices of degree at most 6, Goldberg, Plotkin, and Shannon obtained a deterministic distributed algorithm coloring n-vertex planar graphs with 7 colors in O(log n) rounds. Here, we show how to color planar graphs with 6 colors in polylog(n) rounds. Our algorithm indeed works more generally in the list-coloring setting and for sparse graphs (for such graphs we improve by at least one the number of colors resulting from an efficient algorithm of Barenboim and Elkin, at the expense of a slightly worst complexity). Our bounds on the number of colors turn out to be quite sharp in general. Among other results, we show that no distributed algorithm can color every n-vertex planar graph with 4 colors in o(n) rounds.
稀疏图中颜色较少的分布着色
本文研究了在尽可能少的颜色分布情况下稀疏图的有效着色问题。根据著名的四色定理,平面图最多可以用4种颜色着色,并证明了找到这种着色的(顺序)二次算法。一个自然的问题是在分布式环境中提高这种复杂性。Goldberg、Plotkin和Shannon利用平面图包含最多6次的线性多个顶点的事实,在O(log n)轮中获得了一种7种颜色的n顶点平面图着色的确定性分布式算法。在这里,我们展示了如何在polylog(n)轮中用6种颜色给平面图上色。我们的算法确实在列表着色设置和稀疏图中更普遍地工作(对于这样的图,我们至少在巴伦博伊姆和埃尔金的有效算法的基础上提高了一种颜色的数量,代价是稍微糟糕的复杂性)。总的来说,我们对颜色数量的限定是非常明确的。在其他结果中,我们证明了没有分布式算法可以在o(n)轮中为每个n顶点的平面图涂上4种颜色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信