Segmentation of Prostate Cancer on TRUS Images Using ML

R. I. Zaev, A. Romanov, R. Solovyev
{"title":"Segmentation of Prostate Cancer on TRUS Images Using ML","authors":"R. I. Zaev, A. Romanov, R. Solovyev","doi":"10.1109/SmartIndustryCon57312.2023.10110727","DOIUrl":null,"url":null,"abstract":"Medical research has made tremendous progress in detecting various pathologies in the human body. There is still the problem of the speed of the process, and the lack of a sufficient number of trained professionals in this field. Detection of prostate cancer, in particular, without surgery is a very labor- intensive process. A neural network-based machine learning algorithm has been proposed to solve this problem, making it possible to see suspected areas of lesions in the organ. In this study, a comprehensive analysis of TRUS image processing approaches was carried out, and an algorithm architecture was developed to segment the affected areas. Based on this analysis, we have developed a system for automatic detection and segmentation of prostate cancer.","PeriodicalId":157877,"journal":{"name":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIndustryCon57312.2023.10110727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical research has made tremendous progress in detecting various pathologies in the human body. There is still the problem of the speed of the process, and the lack of a sufficient number of trained professionals in this field. Detection of prostate cancer, in particular, without surgery is a very labor- intensive process. A neural network-based machine learning algorithm has been proposed to solve this problem, making it possible to see suspected areas of lesions in the organ. In this study, a comprehensive analysis of TRUS image processing approaches was carried out, and an algorithm architecture was developed to segment the affected areas. Based on this analysis, we have developed a system for automatic detection and segmentation of prostate cancer.
基于ML的前列腺癌TRUS图像分割
医学研究在检测人体各种病理方面取得了巨大进展。这一进程的速度仍然存在问题,在这一领域缺乏足够数量的受过训练的专业人员。特别是前列腺癌的检测,不需要手术,是一个非常劳动密集型的过程。已经提出了一种基于神经网络的机器学习算法来解决这个问题,使得看到器官中可疑的病变区域成为可能。在本研究中,对TRUS图像处理方法进行了综合分析,并开发了一种算法架构来分割受影响的区域。在此基础上,我们开发了一个前列腺癌的自动检测和分割系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信