System integration of hybrid assembled large aperture Micro Scanner Array for fast scanning LiDAR sensors

T. Sandner, T. Grasshoff, Wolf-Dietrich Owe, A. Herrmann, M. Wildenhain, M. Schwarzenberg, J. Grahmann
{"title":"System integration of hybrid assembled large aperture Micro Scanner Array for fast scanning LiDAR sensors","authors":"T. Sandner, T. Grasshoff, Wolf-Dietrich Owe, A. Herrmann, M. Wildenhain, M. Schwarzenberg, J. Grahmann","doi":"10.1117/1.JOM.2.1.011004","DOIUrl":null,"url":null,"abstract":"Abstract. We present the design and system integration of a hybrid MEMS scanning mirror (MSM) array developed for real-time three-dimensional imaging with a panoramic optical field of view (FOV) of 360  deg  ×  60  deg (horizontal  ×  vertical). The pulsed time-of-flight light detection and ranging (LiDAR) system targets a distance measurement range of 100 m with a video-like frame rate of 10 Hz. The fast vertical scan axis is realized by a synchronous scanning MSM array with large receiver aperture. It increases the scanning rate to 3200 Hz, which is four times faster in comparison with state-of-the-art fast macroscopic polygon scanning systems used in current LiDAR systems. A hybrid assembly of frequency selected scanner elements was chosen instead of a monolithic MEMS array to guaranty high yield of MEMS fabrication and a synchronous operation of all resonant MEMS elements at 1600 Hz with large FOV of 60 deg. The hybrid MSM array consists of a separate emitting mirror for laser scanning of the target and 22 reception elements resulting in a large reception aperture of Deff  =  23  mm. All MSM are driven in parametric resonance to enable a fully synchronized operation of all individual MEMS scanner elements. Therefore, piezoresistive position sensors are integrated inside the MEMS chip, used for position feedback of the driving control. We focus on the MEMS system integration including the microassembly of multiple MEMS scanning elements using micromechanical self-alignment. We present technical details to meet the narrow tolerance budgets for (i) microassembly and (ii) synchronous driving of multiple MEMS scanner elements.","PeriodicalId":127363,"journal":{"name":"Journal of Optical Microsystems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.JOM.2.1.011004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. We present the design and system integration of a hybrid MEMS scanning mirror (MSM) array developed for real-time three-dimensional imaging with a panoramic optical field of view (FOV) of 360  deg  ×  60  deg (horizontal  ×  vertical). The pulsed time-of-flight light detection and ranging (LiDAR) system targets a distance measurement range of 100 m with a video-like frame rate of 10 Hz. The fast vertical scan axis is realized by a synchronous scanning MSM array with large receiver aperture. It increases the scanning rate to 3200 Hz, which is four times faster in comparison with state-of-the-art fast macroscopic polygon scanning systems used in current LiDAR systems. A hybrid assembly of frequency selected scanner elements was chosen instead of a monolithic MEMS array to guaranty high yield of MEMS fabrication and a synchronous operation of all resonant MEMS elements at 1600 Hz with large FOV of 60 deg. The hybrid MSM array consists of a separate emitting mirror for laser scanning of the target and 22 reception elements resulting in a large reception aperture of Deff  =  23  mm. All MSM are driven in parametric resonance to enable a fully synchronized operation of all individual MEMS scanner elements. Therefore, piezoresistive position sensors are integrated inside the MEMS chip, used for position feedback of the driving control. We focus on the MEMS system integration including the microassembly of multiple MEMS scanning elements using micromechanical self-alignment. We present technical details to meet the narrow tolerance budgets for (i) microassembly and (ii) synchronous driving of multiple MEMS scanner elements.
用于快速扫描激光雷达传感器的混合装配大孔径微扫描仪阵列的系统集成
摘要我们提出了一种用于实时三维成像的混合MEMS扫描镜(MSM)阵列的设计和系统集成,其全景光学视场(FOV)为360度× 60度(水平×垂直)。脉冲飞行时间光探测和测距(LiDAR)系统的目标距离测量范围为100米,帧率为10hz,类似视频。快速垂直扫描轴是通过大接收孔径同步扫描MSM阵列实现的。它将扫描速率提高到3200赫兹,与当前激光雷达系统中使用的最先进的快速宏观多边形扫描系统相比,速度快了四倍。为了保证MEMS制造的高产量和所有谐振MEMS元件在1600 Hz同步工作,视场为60°,选择了频率选择扫描元件的混合组件来代替单片MEMS阵列。混合MSM阵列由一个用于激光扫描目标的独立发射镜和22个接收元件组成,接收孔径为Deff = 23 mm。所有的MSM都在参数共振中驱动,以实现所有单个MEMS扫描仪元件的完全同步操作。因此,将压阻式位置传感器集成在MEMS芯片内,用于驱动控制的位置反馈。我们的重点是MEMS系统集成,包括使用微机械自对准的多个MEMS扫描元件的微组装。我们提出了技术细节,以满足(i)微组装和(ii)多个MEMS扫描仪元件同步驱动的狭窄公差预算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信