L. Panes-Ruiz, B. Ibarlucea, Eunhye Baek, SangWook Park, C. Baek, Xinliang Feng, G. Cuniberti
{"title":"Neuromorphic hybrid systems based on polarizable thin film-coated silicon nanowire field-effect transistors","authors":"L. Panes-Ruiz, B. Ibarlucea, Eunhye Baek, SangWook Park, C. Baek, Xinliang Feng, G. Cuniberti","doi":"10.1109/CNNA49188.2021.9610819","DOIUrl":null,"url":null,"abstract":"We present two approaches for the development of hybrid neurotransistors based on the combination of polarizable thin films on silicon nanowires field-effect transistors for the emulation of signal processing by neurons. The polarizing properties of the films coming from the ion redistribution under bias voltage provide the systems with a memristive behavior needed to achieve the neuronal intrinsic plasticity using ionic migration in the neuron membrane at a hardware level.","PeriodicalId":325231,"journal":{"name":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA49188.2021.9610819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present two approaches for the development of hybrid neurotransistors based on the combination of polarizable thin films on silicon nanowires field-effect transistors for the emulation of signal processing by neurons. The polarizing properties of the films coming from the ion redistribution under bias voltage provide the systems with a memristive behavior needed to achieve the neuronal intrinsic plasticity using ionic migration in the neuron membrane at a hardware level.