M. Cvejić, D. Mikitchuk, P. Sharma, E. Kroupp, T. Queller, R. Doron, Y. Maron, A. Velikovich, A. Fruchtman, I. Ochs, E. Kolmes, N. Fisch
{"title":"Observation of Self-Generated Plasma Rotation and its Effects in A Z-Pinch With Preembedded Axial Magnetic Field","authors":"M. Cvejić, D. Mikitchuk, P. Sharma, E. Kroupp, T. Queller, R. Doron, Y. Maron, A. Velikovich, A. Fruchtman, I. Ochs, E. Kolmes, N. Fisch","doi":"10.1109/ICOPS45751.2022.9813228","DOIUrl":null,"url":null,"abstract":"Z-pinches with preembedded magnetic field $\\left({{B_{{z^0}}}}\\right)$ undergo radial implosion due to the J × B force while compressing the plasma and the embedded magnetic flux. In this work, we demonstrate for the first time a self-generated plasma rotation for a cylindrical Z-pinch implosion with ${B_{{z^0}}}$ [1] . The rotation direction is found to depend on the direction of ${B_{{z^0}}}$ . The observed rotation velocity is found to be comparable to the implosion velocity. The rotation is found to affect the implosion dynamics by exerting a centrifugal force and by mitigating plasma instabilities. The evolution of the rotation is seen to be consistent with magnetic flux surface isorotation, a novel observation in a Z pinch, which is a prototypical time-dependent system.","PeriodicalId":175964,"journal":{"name":"2022 IEEE International Conference on Plasma Science (ICOPS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOPS45751.2022.9813228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Z-pinches with preembedded magnetic field $\left({{B_{{z^0}}}}\right)$ undergo radial implosion due to the J × B force while compressing the plasma and the embedded magnetic flux. In this work, we demonstrate for the first time a self-generated plasma rotation for a cylindrical Z-pinch implosion with ${B_{{z^0}}}$ [1] . The rotation direction is found to depend on the direction of ${B_{{z^0}}}$ . The observed rotation velocity is found to be comparable to the implosion velocity. The rotation is found to affect the implosion dynamics by exerting a centrifugal force and by mitigating plasma instabilities. The evolution of the rotation is seen to be consistent with magnetic flux surface isorotation, a novel observation in a Z pinch, which is a prototypical time-dependent system.