Variational Inference via Rényi Upper-Lower Bound Optimization

Dana Oshri Zalman, S. Fine
{"title":"Variational Inference via Rényi Upper-Lower Bound Optimization","authors":"Dana Oshri Zalman, S. Fine","doi":"10.1109/ICMLA55696.2022.00136","DOIUrl":null,"url":null,"abstract":"Variational inference provides a way to approximate probability densities. It does so by optimizing an upper or a lower bound on the likelihood of the observed data (the evidence). The classic variational inference approach suggests to maximize the Evidence Lower BOund (ELBO). Recent proposals suggest to optimize the variational Rényi bound (VR) and χ upper bound. However, these estimates are either biased or difficult to approximate, due to a high variance.In this paper we introduce a new upper bound (termed VRLU) which is based on the existing variational Rényi bound. In contrast to the existing VR bound, the Monte Carlo (MC) approximation of the VRLU bound is unbiased. Furthermore, we devise a (sandwiched) upper-lower bound variational inference method (termed VRS) to jointly optimize the upper and lower bounds. We present a set of experiments, designed to evaluate the new VRLU bound, and to compare the VRS method with the classic VAE and the VR methods over a set of digit recognition tasks. The experiments and results demonstrate the VRLU bound advantage, and the wide applicability of the VRS method.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Variational inference provides a way to approximate probability densities. It does so by optimizing an upper or a lower bound on the likelihood of the observed data (the evidence). The classic variational inference approach suggests to maximize the Evidence Lower BOund (ELBO). Recent proposals suggest to optimize the variational Rényi bound (VR) and χ upper bound. However, these estimates are either biased or difficult to approximate, due to a high variance.In this paper we introduce a new upper bound (termed VRLU) which is based on the existing variational Rényi bound. In contrast to the existing VR bound, the Monte Carlo (MC) approximation of the VRLU bound is unbiased. Furthermore, we devise a (sandwiched) upper-lower bound variational inference method (termed VRS) to jointly optimize the upper and lower bounds. We present a set of experiments, designed to evaluate the new VRLU bound, and to compare the VRS method with the classic VAE and the VR methods over a set of digit recognition tasks. The experiments and results demonstrate the VRLU bound advantage, and the wide applicability of the VRS method.
基于r上下限优化的变分推理
变分推理提供了一种近似概率密度的方法。它通过优化观测数据(证据)可能性的上限或下限来实现这一点。经典的变分推理方法建议最大化证据下限(ELBO)。最近的建议是优化变分r边界(VR)和χ上界。然而,由于方差很大,这些估计要么是有偏差的,要么是难以近似的。本文在已有变分rsamunyi界的基础上,引入了一个新的上界(VRLU)。与现有的虚拟现实界相比,VRLU界的蒙特卡罗(MC)近似是无偏的。此外,我们设计了一种(夹在中间的)上下界变分推理方法(VRS)来联合优化上界和下界。我们提出了一组实验,旨在评估新的VRLU边界,并在一组数字识别任务中将VRS方法与经典VAE和VR方法进行比较。实验和结果证明了VRLU绑定的优势,以及VRS方法的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信