Predicting Defect-Prone Software Modules Using Shifted-Scaled Dirichlet Distribution

Rua Alsuroji, N. Bouguila, Nuha Zamzami
{"title":"Predicting Defect-Prone Software Modules Using Shifted-Scaled Dirichlet Distribution","authors":"Rua Alsuroji, N. Bouguila, Nuha Zamzami","doi":"10.1109/AI4I.2018.8665686","DOIUrl":null,"url":null,"abstract":"Effective prediction of defect-prone software modules enables software developers to avoid the expensive costs in resources and efforts they might expense, and focus efficiently on quality assurance activities. Different classification methods have been applied previously to categorize a module in a system into two classes; defective or non-defective. Among the successful approaches, finite mixture modeling has been efficiently applied for solving this problem. This paper proposes the shifted-scaled Dirichlet model (SSDM) and evaluates its capability in predicting defect-prone software modules in the context of four NASA datasets. The results indicate that the prediction performance of SSDM is competitive to some previously used generative models.","PeriodicalId":133657,"journal":{"name":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I.2018.8665686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Effective prediction of defect-prone software modules enables software developers to avoid the expensive costs in resources and efforts they might expense, and focus efficiently on quality assurance activities. Different classification methods have been applied previously to categorize a module in a system into two classes; defective or non-defective. Among the successful approaches, finite mixture modeling has been efficiently applied for solving this problem. This paper proposes the shifted-scaled Dirichlet model (SSDM) and evaluates its capability in predicting defect-prone software modules in the context of four NASA datasets. The results indicate that the prediction performance of SSDM is competitive to some previously used generative models.
利用移位比例狄利克雷分布预测易出现缺陷的软件模块
对容易出现缺陷的软件模块的有效预测使软件开发人员能够避免他们可能花费的昂贵的资源和工作成本,并有效地集中在质量保证活动上。以前应用了不同的分类方法将系统中的模块分为两类;有缺陷或无缺陷。在成功的方法中,有限混合建模有效地解决了这一问题。本文提出了平移尺度狄利克雷模型(SSDM),并在四个NASA数据集的背景下评估了该模型预测软件模块缺陷的能力。结果表明,SSDM的预测性能与以前使用的一些生成模型相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信