{"title":"Relational and median variants of Possibilistic Fuzzy C-Means","authors":"Tina Geweniger, T. Villmann","doi":"10.1109/WSOM.2017.8020032","DOIUrl":null,"url":null,"abstract":"In this article we propose a relational and a median possibilistic clustering method. Both methods are modifications of Possibilistic Fuzzy C-Means as introduced by Pal et al. [1]. The proposed algorithms are applicable for abstract non-vectorial data objects where only the dissimilarities of the objects are known. For the relational version we assume a Euclidean data embedding. For data where this assumption is not feasible we introduce a median variant restricting prototypes to be data objects themselves.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this article we propose a relational and a median possibilistic clustering method. Both methods are modifications of Possibilistic Fuzzy C-Means as introduced by Pal et al. [1]. The proposed algorithms are applicable for abstract non-vectorial data objects where only the dissimilarities of the objects are known. For the relational version we assume a Euclidean data embedding. For data where this assumption is not feasible we introduce a median variant restricting prototypes to be data objects themselves.