Total Italian domatic number of graphs

S. M. Sheikholeslami, L. Volkmann
{"title":"Total Italian domatic number of graphs","authors":"S. M. Sheikholeslami, L. Volkmann","doi":"10.56415/csjm.v31.09","DOIUrl":null,"url":null,"abstract":"Let $G$ be a graph with vertex set $V(G)$. An \\textit{Italian dominating function} (IDF) on a graph $G$ is a function $f:V(G)\\longrightarrow \\{0,1,2\\}$ such that every vertex $v$ with $f(v)=0$ is adjacent to a vertex $u$ with $f(u)=2$ or to two vertices $w$ and $z$ with $f(w)=f(z)=1$. An IDF $f$ is called a \\textit{total Italian dominating function} if every vertex $v$ with $f(v)\\ge 1$ is adjacent to a vertex $u$ with $f(u)\\ge 1$. A set $\\{f_1,f_2,\\ldots,f_d\\}$ of distinct total Italian dominating functions on $G$ with the property that $\\sum_{i=1}^df_i(v)\\le 2$ for each vertex $v\\in V(G)$, is called a \\textit{total Italian dominating family} (of functions) on $G$. The maximum number of functions in a total Italian dominating family on $G$ is the \\textit{total Italian domatic number} of $G$, denoted by $d_{tI}(G)$. In this paper, we initiate the study of the total Italian domatic number and present different sharp bounds on $d_{tI}(G)$. In addition, we determine this parameter for some classes of graphs.","PeriodicalId":262087,"journal":{"name":"Comput. Sci. J. Moldova","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Sci. J. Moldova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/csjm.v31.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $G$ be a graph with vertex set $V(G)$. An \textit{Italian dominating function} (IDF) on a graph $G$ is a function $f:V(G)\longrightarrow \{0,1,2\}$ such that every vertex $v$ with $f(v)=0$ is adjacent to a vertex $u$ with $f(u)=2$ or to two vertices $w$ and $z$ with $f(w)=f(z)=1$. An IDF $f$ is called a \textit{total Italian dominating function} if every vertex $v$ with $f(v)\ge 1$ is adjacent to a vertex $u$ with $f(u)\ge 1$. A set $\{f_1,f_2,\ldots,f_d\}$ of distinct total Italian dominating functions on $G$ with the property that $\sum_{i=1}^df_i(v)\le 2$ for each vertex $v\in V(G)$, is called a \textit{total Italian dominating family} (of functions) on $G$. The maximum number of functions in a total Italian dominating family on $G$ is the \textit{total Italian domatic number} of $G$, denoted by $d_{tI}(G)$. In this paper, we initiate the study of the total Italian domatic number and present different sharp bounds on $d_{tI}(G)$. In addition, we determine this parameter for some classes of graphs.
图的意大利国内总数
设$G$为顶点集为$V(G)$的图。图$G$上的\textit{意式支配函数} (IDF)是一个函数$f:V(G)\longrightarrow \{0,1,2\}$,使得$f(v)=0$的每个顶点$v$与$f(u)=2$的顶点$u$相邻,或者与$f(w)=f(z)=1$的两个顶点$w$和$z$相邻。如果每个带有$f(v)\ge 1$的顶点$v$与带有$f(u)\ge 1$的顶点$u$相邻,则IDF $f$称为\textit{全意式支配函数}。一个在$G$上的不同的全意大利支配函数的集合$\{f_1,f_2,\ldots,f_d\}$,对于每个顶点$v\in V(G)$具有$\sum_{i=1}^df_i(v)\le 2$的性质,称为$G$上的\textit{全意大利统治家族}(函数的)集合。在$G$上的全部意大利语支配族中函数的最大数目为$G$的\textit{意大利家庭总数},用$d_{tI}(G)$表示。本文首先研究了意大利人口总数,并在$d_{tI}(G)$上给出了不同的锐界。此外,我们还确定了某些图类的这个参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信