{"title":"Robust neurofuzzy controller design of a class of uncertain multivariable nonlinear systems","authors":"Wei-Song Lin, Chun-Sheng Chen","doi":"10.1109/CCA.2001.973984","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to develop a stable adaptive MIMO fuzzy logic controller to overcome the interaction among the subsystems by a decoupling neural network and to facilitate robust properties by fine-tuning the consequent membership functions. The proposed adaptive fizzy controller does not require any knowledge of a nonlinear system. By using H/sup /spl infin// tracking performance index, the overall system with the proposed controller has been proved to be uniform ultimate bounded. Simulation results of a two-dimensional inverted pendulum confirm that the effect of both the fuzzy approximation error and external disturbance on the tracking error can be attenuated efficiently by the proposed method.","PeriodicalId":365390,"journal":{"name":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2001.973984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The goal of this paper is to develop a stable adaptive MIMO fuzzy logic controller to overcome the interaction among the subsystems by a decoupling neural network and to facilitate robust properties by fine-tuning the consequent membership functions. The proposed adaptive fizzy controller does not require any knowledge of a nonlinear system. By using H/sup /spl infin// tracking performance index, the overall system with the proposed controller has been proved to be uniform ultimate bounded. Simulation results of a two-dimensional inverted pendulum confirm that the effect of both the fuzzy approximation error and external disturbance on the tracking error can be attenuated efficiently by the proposed method.