A SOM neural network approach to load forecasting. Meteorological and time frame influence

M. López, S. Valero, C. Senabre, J. Aparicio
{"title":"A SOM neural network approach to load forecasting. Meteorological and time frame influence","authors":"M. López, S. Valero, C. Senabre, J. Aparicio","doi":"10.1109/POWERENG.2011.6036553","DOIUrl":null,"url":null,"abstract":"An artificial neural network based on Kohonen self-organizing maps (SOM) and its application to short-term load forecasting (STLF) is presented. The proposed model is capable of forecasting up to 24 hour long profiles, up to 24 hours ahead of the beginning of the period. The input used by the model depends on the available information at the time of the forecast, and it may contain meteorological variables and previous hourly load values. Also, different time frames for the input training data are analyzed. The output of the model is a curve of the forecasted load for the specified period. The test of forecasting 2009 data from the Spanish power system resulted in a 2.67% MAPE (mean absolute percentage error).","PeriodicalId":166144,"journal":{"name":"2011 International Conference on Power Engineering, Energy and Electrical Drives","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Power Engineering, Energy and Electrical Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERENG.2011.6036553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An artificial neural network based on Kohonen self-organizing maps (SOM) and its application to short-term load forecasting (STLF) is presented. The proposed model is capable of forecasting up to 24 hour long profiles, up to 24 hours ahead of the beginning of the period. The input used by the model depends on the available information at the time of the forecast, and it may contain meteorological variables and previous hourly load values. Also, different time frames for the input training data are analyzed. The output of the model is a curve of the forecasted load for the specified period. The test of forecasting 2009 data from the Spanish power system resulted in a 2.67% MAPE (mean absolute percentage error).
负荷预测的SOM神经网络方法。气象和时间框架影响
提出了一种基于Kohonen自组织映射(SOM)的人工神经网络及其在短期负荷预测中的应用。提出的模型能够预测长达24小时的剖面图,最多提前24小时开始。模型使用的输入取决于预报时的可用信息,其中可能包含气象变量和以前的每小时负荷值。此外,还分析了输入训练数据的不同时间框架。该模型的输出是指定时间段内预测负荷的曲线。对西班牙电力系统2009年的预测数据进行测试,MAPE(平均绝对百分比误差)为2.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信