Learning-Based Rainfall Estimation via Communication Satellite Links

A. Gharanjik, K. Mishra, B. Shankar, B. Ottersten
{"title":"Learning-Based Rainfall Estimation via Communication Satellite Links","authors":"A. Gharanjik, K. Mishra, B. Shankar, B. Ottersten","doi":"10.1109/SSP.2018.8450726","DOIUrl":null,"url":null,"abstract":"We present a method for estimating rainfall by opportunistic use of Ka-band satellite communication network. Our approach is based on the attenuation of the satellite link signal in the rain medium and exploits the nearly linear relation between the rain rate and the specific attenuation at Ka-band frequencies. Although our experimental setup is not intended to achieve high resolutions as millimeter wavelength weather radars, it is instructive because of easy availability of millions of satellite ground terminals throughout the world. The received signal is obtained over a passive link. Therefore, traditional weather radar signal processing to derive parameters for rainfall estimation algorithms is not feasible here. We overcome this disadvantage by employing neural network learning algorithms to extract relevant information. Initial results reveal that rainfall accumulations obtained through our method are 85% closer to the in situ rain gauge estimates than the nearest C-band German weather service Deutscher Wetterdienst (DWD) radar.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present a method for estimating rainfall by opportunistic use of Ka-band satellite communication network. Our approach is based on the attenuation of the satellite link signal in the rain medium and exploits the nearly linear relation between the rain rate and the specific attenuation at Ka-band frequencies. Although our experimental setup is not intended to achieve high resolutions as millimeter wavelength weather radars, it is instructive because of easy availability of millions of satellite ground terminals throughout the world. The received signal is obtained over a passive link. Therefore, traditional weather radar signal processing to derive parameters for rainfall estimation algorithms is not feasible here. We overcome this disadvantage by employing neural network learning algorithms to extract relevant information. Initial results reveal that rainfall accumulations obtained through our method are 85% closer to the in situ rain gauge estimates than the nearest C-band German weather service Deutscher Wetterdienst (DWD) radar.
基于学习的基于通信卫星链路的降雨估计
我们提出了一种利用ka波段卫星通信网络的机会估计降雨量的方法。我们的方法基于雨介质中卫星链路信号的衰减,并利用雨率与ka波段频率的比衰减之间的近似线性关系。虽然我们的实验装置并不打算达到毫米波长气象雷达的高分辨率,但它具有指导意义,因为全世界有数百万个卫星地面终端可供使用。接收到的信号通过无源链路获得。因此,传统的气象雷达信号处理导出参数的降水估计算法在这里是不可行的。我们通过使用神经网络学习算法来提取相关信息来克服这一缺点。初步结果显示,与最近的德国c波段气象服务DWD雷达相比,通过我们的方法获得的降雨量累积与现场雨量计估算值接近85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信