A. D. Cunha, Francesco d’Amore, F. Giroire, Hicham Lesfari, Emanuele Natale, L. Viennot
{"title":"Revisiting the Random Subset Sum Problem","authors":"A. D. Cunha, Francesco d’Amore, F. Giroire, Hicham Lesfari, Emanuele Natale, L. Viennot","doi":"10.4230/LIPIcs.ESA.2023.37","DOIUrl":null,"url":null,"abstract":"The average properties of the well-known Subset Sum Problem can be studied by the means of its randomised version, where we are given a target value $z$, random variables $X_1, \\ldots, X_n$, and an error parameter $\\varepsilon>0$, and we seek a subset of the $X_i$s whose sum approximates $z$ up to error $\\varepsilon$. In this setup, it has been shown that, under mild assumptions on the distribution of the random variables, a sample of size $\\mathcal{O}(\\log(1/\\varepsilon))$ suffices to obtain, with high probability, approximations for all values in $[-1/2, 1/2]$. Recently, this result has been rediscovered outside the algorithms community, enabling meaningful progress in other fields. In this work we present an alternative proof for this theorem, with a more direct approach and resourcing to more elementary tools.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ESA.2023.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The average properties of the well-known Subset Sum Problem can be studied by the means of its randomised version, where we are given a target value $z$, random variables $X_1, \ldots, X_n$, and an error parameter $\varepsilon>0$, and we seek a subset of the $X_i$s whose sum approximates $z$ up to error $\varepsilon$. In this setup, it has been shown that, under mild assumptions on the distribution of the random variables, a sample of size $\mathcal{O}(\log(1/\varepsilon))$ suffices to obtain, with high probability, approximations for all values in $[-1/2, 1/2]$. Recently, this result has been rediscovered outside the algorithms community, enabling meaningful progress in other fields. In this work we present an alternative proof for this theorem, with a more direct approach and resourcing to more elementary tools.