Band selection and classification of hyperspectral images by minimizing normalized mutual information

E. Sarhrouni, A. Hammouch, D. Aboutajdine
{"title":"Band selection and classification of hyperspectral images by minimizing normalized mutual information","authors":"E. Sarhrouni, A. Hammouch, D. Aboutajdine","doi":"10.1109/ICMCS.2012.6320192.","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSI) classification is a high technical remote sensing tool. The main goal is to classify the point of a region. The HIS contains more than a hundred bidirectional measures, called bands (or simply images), of the same region called Ground Truth Map (GT). Unfortunately, some bands contain redundant information, others are affected by the noise, and the high dimensionalities of features make the accuracy of classification lower. All these bands can be important for some applications, but for the classification a small subset of these is relevant. In this paper we use mutual information (MI) to select the relevant bands; and the Normalized Mutual Information coefficient to avoid and control redundant ones. This is a feature selection scheme and a Filter strategy. We establish this study on HSI AVIRIS 92AV3C. This is effectiveness, and fast scheme to control redundancy.","PeriodicalId":369113,"journal":{"name":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCS.2012.6320192.","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Hyperspectral images (HSI) classification is a high technical remote sensing tool. The main goal is to classify the point of a region. The HIS contains more than a hundred bidirectional measures, called bands (or simply images), of the same region called Ground Truth Map (GT). Unfortunately, some bands contain redundant information, others are affected by the noise, and the high dimensionalities of features make the accuracy of classification lower. All these bands can be important for some applications, but for the classification a small subset of these is relevant. In this paper we use mutual information (MI) to select the relevant bands; and the Normalized Mutual Information coefficient to avoid and control redundant ones. This is a feature selection scheme and a Filter strategy. We establish this study on HSI AVIRIS 92AV3C. This is effectiveness, and fast scheme to control redundancy.
基于最小化归一化互信息的高光谱图像波段选择与分类
高光谱图像(HSI)分类是一种高技术遥感工具。主要目标是对一个区域的点进行分类。HIS包含100多个双向测量,称为波段(或简单的图像),称为地面真值图(GT)的同一区域。遗憾的是,一些频带包含冗余信息,另一些频带受到噪声的影响,特征的高维使分类精度降低。所有这些波段对于某些应用来说都很重要,但对于分类来说,这些波段中的一小部分是相关的。本文采用互信息(MI)选择相关波段;和归一化互信息系数来避免和控制冗余信息。这是一种特征选择方案和过滤策略。我们建立了对HSI病毒92AV3C的研究。这是一种有效、快速的冗余控制方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信