Teaching a Robot how to Spatially Arrange Objects: Representation and Recognition Issues

Luca Buoncompagni, F. Mastrogiovanni
{"title":"Teaching a Robot how to Spatially Arrange Objects: Representation and Recognition Issues","authors":"Luca Buoncompagni, F. Mastrogiovanni","doi":"10.1109/RO-MAN46459.2019.8956457","DOIUrl":null,"url":null,"abstract":"This paper introduces a technique to teach robots how to represent and qualitatively interpret perceived scenes in tabletop scenarios. To this aim, we envisage a 3-step human-robot interaction process, in which $(i)$ a human shows a scene to a robot, $(ii)$ the robot memorises a symbolic scene representation (in terms of objects and their spatial arrangement), and (iii) the human can revise such a representation, if necessary, by further interacting with the robot; here, we focus on steps i and ii. Scene classification occurs at a symbolic level, using ontology-based instance checking and subsumption algorithms. Experiments showcase the main properties of the approach, i.e., detecting whether a new scene belongs to a scene class already represented by the robot, or otherwise creating a new representation with a one shot learning approach, and correlating scenes from a qualitative standpoint to detect similarities and differences in order to build a scene hierarchy.","PeriodicalId":286478,"journal":{"name":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN46459.2019.8956457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a technique to teach robots how to represent and qualitatively interpret perceived scenes in tabletop scenarios. To this aim, we envisage a 3-step human-robot interaction process, in which $(i)$ a human shows a scene to a robot, $(ii)$ the robot memorises a symbolic scene representation (in terms of objects and their spatial arrangement), and (iii) the human can revise such a representation, if necessary, by further interacting with the robot; here, we focus on steps i and ii. Scene classification occurs at a symbolic level, using ontology-based instance checking and subsumption algorithms. Experiments showcase the main properties of the approach, i.e., detecting whether a new scene belongs to a scene class already represented by the robot, or otherwise creating a new representation with a one shot learning approach, and correlating scenes from a qualitative standpoint to detect similarities and differences in order to build a scene hierarchy.
教机器人如何在空间上排列物体:表示和识别问题
本文介绍了一种技术来教机器人如何在桌面场景中表示和定性地解释感知到的场景。为此,我们设想了一个三步人机交互过程,其中(i)人类向机器人展示一个场景,(ii)机器人记忆一个象征性的场景表示(就物体及其空间排列而言),(iii)如果有必要,人类可以通过进一步与机器人交互来修改这种表示;在这里,我们关注步骤1和步骤2。场景分类发生在符号级别,使用基于本体的实例检查和包容算法。实验展示了该方法的主要特性,即检测新场景是否属于机器人已经表示的场景类,或者使用一次性学习方法创建新的表示,并从定性的角度将场景关联起来以检测相似性和差异性,从而构建场景层次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信