{"title":"Teaching a Robot how to Spatially Arrange Objects: Representation and Recognition Issues","authors":"Luca Buoncompagni, F. Mastrogiovanni","doi":"10.1109/RO-MAN46459.2019.8956457","DOIUrl":null,"url":null,"abstract":"This paper introduces a technique to teach robots how to represent and qualitatively interpret perceived scenes in tabletop scenarios. To this aim, we envisage a 3-step human-robot interaction process, in which $(i)$ a human shows a scene to a robot, $(ii)$ the robot memorises a symbolic scene representation (in terms of objects and their spatial arrangement), and (iii) the human can revise such a representation, if necessary, by further interacting with the robot; here, we focus on steps i and ii. Scene classification occurs at a symbolic level, using ontology-based instance checking and subsumption algorithms. Experiments showcase the main properties of the approach, i.e., detecting whether a new scene belongs to a scene class already represented by the robot, or otherwise creating a new representation with a one shot learning approach, and correlating scenes from a qualitative standpoint to detect similarities and differences in order to build a scene hierarchy.","PeriodicalId":286478,"journal":{"name":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN46459.2019.8956457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper introduces a technique to teach robots how to represent and qualitatively interpret perceived scenes in tabletop scenarios. To this aim, we envisage a 3-step human-robot interaction process, in which $(i)$ a human shows a scene to a robot, $(ii)$ the robot memorises a symbolic scene representation (in terms of objects and their spatial arrangement), and (iii) the human can revise such a representation, if necessary, by further interacting with the robot; here, we focus on steps i and ii. Scene classification occurs at a symbolic level, using ontology-based instance checking and subsumption algorithms. Experiments showcase the main properties of the approach, i.e., detecting whether a new scene belongs to a scene class already represented by the robot, or otherwise creating a new representation with a one shot learning approach, and correlating scenes from a qualitative standpoint to detect similarities and differences in order to build a scene hierarchy.