A Transfer Learning Approach to Expedite Training of Artificial Neural Networks for Variability-Aware Signal Integrity Analysis of MWCNT Interconnects

Surila Guglani, K. Dimple, A. Dasgupta, Rohit Sharma, B. Kaushik, Sourajeet Roy
{"title":"A Transfer Learning Approach to Expedite Training of Artificial Neural Networks for Variability-Aware Signal Integrity Analysis of MWCNT Interconnects","authors":"Surila Guglani, K. Dimple, A. Dasgupta, Rohit Sharma, B. Kaushik, Sourajeet Roy","doi":"10.1109/EPEPS53828.2022.9947162","DOIUrl":null,"url":null,"abstract":"In this paper, an artificial neural network (ANN) trained using a novel transfer learning approach is presented for the variability-aware signal integrity analysis of on-chip multi-walled carbon nanotube (MWCNT) interconnects. In the proposed transfer learning approach, initially a secondary ANN is trained to emulate the signal integrity quantities of interest of an approximate equivalent single conductor (ESC) model of the MWCNT interconnects. Thereafter, the values of the weights and bias terms of this secondary ANN are used to expedite the training of the primary ANN that will emulate the signal integrity quantities of the more rigorous multiconductor circuit (MCC) model of the MWCNT interconnects.","PeriodicalId":284818,"journal":{"name":"2022 IEEE 31st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 31st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS53828.2022.9947162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an artificial neural network (ANN) trained using a novel transfer learning approach is presented for the variability-aware signal integrity analysis of on-chip multi-walled carbon nanotube (MWCNT) interconnects. In the proposed transfer learning approach, initially a secondary ANN is trained to emulate the signal integrity quantities of interest of an approximate equivalent single conductor (ESC) model of the MWCNT interconnects. Thereafter, the values of the weights and bias terms of this secondary ANN are used to expedite the training of the primary ANN that will emulate the signal integrity quantities of the more rigorous multiconductor circuit (MCC) model of the MWCNT interconnects.
一种快速训练人工神经网络的迁移学习方法,用于MWCNT互连的可变性感知信号完整性分析
本文提出了一种基于迁移学习方法训练的人工神经网络(ANN),用于片上多壁碳纳米管(MWCNT)互连的可变性感知信号完整性分析。在提出的迁移学习方法中,首先训练二级人工神经网络来模拟MWCNT互连的近似等效单导体(ESC)模型的信号完整性量。然后,利用该次级人工神经网络的权重和偏置项的值来加快初级人工神经网络的训练,以模拟MWCNT互连的更严格的多导体电路(MCC)模型的信号完整性量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信