Investigation of Different Probability Distribution Functions for Wind Speed Modelling Using Classical and Novel Metaheuristic Methods

A. K. Khamees, A. Abdelaziz, Makram R. Eskaros, M. Attia
{"title":"Investigation of Different Probability Distribution Functions for Wind Speed Modelling Using Classical and Novel Metaheuristic Methods","authors":"A. K. Khamees, A. Abdelaziz, Makram R. Eskaros, M. Attia","doi":"10.1109/MEPCON50283.2021.9686280","DOIUrl":null,"url":null,"abstract":"This paper presents four different probability distribution functions (PDF) which can represent the stochastic nature of wind speed in a certain location. The four distributions are Weibull distribution, lognormal distribution, Gamma distribution, and inverse Gaussian distribution. The wind speed data utilized in this study is hourly average wind speed data collected from a wind farm in Texas city in the United States for five years. Two methods are used to get parameters of the abovementioned distributions, where the first one is a numerical method called the maximum likelihood method and the second one is a novel artificial intelligence method developed in 2021 called Aquila Optimizer. Histogram bars and the probability density function for the four probability distribution functions are presented to visualize the fitting of each graph. All probability distribution functions are compared using actual wind readings obtained from site and data obtained from distribution curve by correlation coefficient (R2), root means square error (RMSE), and Chi-square (X2). The Gamma distribution function gives the best fitting curve, which proves that not always Weibull is the best choice to represent wind speed distribution but selecting of PDF depends on wind speed data under study.","PeriodicalId":141478,"journal":{"name":"2021 22nd International Middle East Power Systems Conference (MEPCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Middle East Power Systems Conference (MEPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEPCON50283.2021.9686280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents four different probability distribution functions (PDF) which can represent the stochastic nature of wind speed in a certain location. The four distributions are Weibull distribution, lognormal distribution, Gamma distribution, and inverse Gaussian distribution. The wind speed data utilized in this study is hourly average wind speed data collected from a wind farm in Texas city in the United States for five years. Two methods are used to get parameters of the abovementioned distributions, where the first one is a numerical method called the maximum likelihood method and the second one is a novel artificial intelligence method developed in 2021 called Aquila Optimizer. Histogram bars and the probability density function for the four probability distribution functions are presented to visualize the fitting of each graph. All probability distribution functions are compared using actual wind readings obtained from site and data obtained from distribution curve by correlation coefficient (R2), root means square error (RMSE), and Chi-square (X2). The Gamma distribution function gives the best fitting curve, which proves that not always Weibull is the best choice to represent wind speed distribution but selecting of PDF depends on wind speed data under study.
不同概率分布函数在风速建模中的应用
本文提出了四种不同的概率分布函数(PDF),它们可以表示某一地点风速的随机性。这四种分布分别是威布尔分布、对数正态分布、伽马分布和逆高斯分布。本研究中使用的风速数据是在美国德克萨斯州的一个风电场收集的5年的每小时平均风速数据。获取上述分布参数的方法有两种,第一种方法是称为极大似然法的数值方法,第二种方法是2021年开发的一种新型人工智能方法,称为Aquila Optimizer。给出了直方图条和四个概率分布函数的概率密度函数,使每个图的拟合可视化。各概率分布函数采用现场实测风值与分布曲线数据进行相关系数(R2)、均方根误差(RMSE)和卡方(X2)比较。伽玛分布函数给出了最优拟合曲线,证明了Weibull并不一定是表示风速分布的最佳选择,而PDF的选择取决于所研究的风速数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信