A Probabilistic Graphical Models Approach to Model Interconnectedness

Alexander Denev, Adrien Papaioannou, Orazio Angelini
{"title":"A Probabilistic Graphical Models Approach to Model Interconnectedness","authors":"Alexander Denev, Adrien Papaioannou, Orazio Angelini","doi":"10.2139/ssrn.3078021","DOIUrl":null,"url":null,"abstract":"In this paper, we show that using multiple models when executing a specific task almost unavoidably gives rise to interaction between them, especially when their number is large. We show that this interaction can lead to biased and incomplete results if treated inappropriately (which we believe is the current standard in the financial industry). We propose the use of probabilistic graphical models – a technique widely used in machine learning and expert systems as a remedy to this problem. We discuss some numerical aspects of our approach that will be present in any practical implementation. We then examine, in detail, a practical example of using this method in a stress testing context.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3078021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we show that using multiple models when executing a specific task almost unavoidably gives rise to interaction between them, especially when their number is large. We show that this interaction can lead to biased and incomplete results if treated inappropriately (which we believe is the current standard in the financial industry). We propose the use of probabilistic graphical models – a technique widely used in machine learning and expert systems as a remedy to this problem. We discuss some numerical aspects of our approach that will be present in any practical implementation. We then examine, in detail, a practical example of using this method in a stress testing context.
模型互联性的概率图模型方法
在本文中,我们证明了在执行特定任务时使用多个模型几乎不可避免地会产生它们之间的交互,特别是当它们的数量很大时。我们表明,如果处理不当(我们认为这是金融行业目前的标准),这种相互作用可能导致有偏见和不完整的结果。我们建议使用概率图形模型——一种广泛应用于机器学习和专家系统的技术来解决这个问题。我们将讨论我们的方法的一些数值方面,这些方面将出现在任何实际实施中。然后,我们详细检查在压力测试上下文中使用此方法的实际示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信