Klara Seitz, Sebastian Serth, Konrad-Felix Krentz, C. Meinel
{"title":"Enabling En-Route Filtering for End-to-End Encrypted CoAP Messages","authors":"Klara Seitz, Sebastian Serth, Konrad-Felix Krentz, C. Meinel","doi":"10.1145/3131672.3136960","DOIUrl":null,"url":null,"abstract":"IoT devices usually are battery-powered and directly connected to the Internet. This makes them vulnerable to so-called path-based denial-of-service (PDoS) attacks. For example, in a PDoS attack an adversary sends multiple Constrained Application Protocol (CoAP) messages towards an IoT device, thereby causing each IoT device along the path to expend energy for forwarding this message. Current end-to-end security solutions, such as DTLS or IPsec, fail to prevent such attacks since they only filter out inauthentic CoAP messages at their destination. This demonstration shows an approach to allow en-route filtering where a trusted gateway has all necessary information to check the integrity, decrypt and, if necessary, drop a message before forwarding it to the constrained mote. Our approach preserves precious resources of IoT devices in the face of path-based denial-of-service attacks by remote attackers.","PeriodicalId":424262,"journal":{"name":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3131672.3136960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
IoT devices usually are battery-powered and directly connected to the Internet. This makes them vulnerable to so-called path-based denial-of-service (PDoS) attacks. For example, in a PDoS attack an adversary sends multiple Constrained Application Protocol (CoAP) messages towards an IoT device, thereby causing each IoT device along the path to expend energy for forwarding this message. Current end-to-end security solutions, such as DTLS or IPsec, fail to prevent such attacks since they only filter out inauthentic CoAP messages at their destination. This demonstration shows an approach to allow en-route filtering where a trusted gateway has all necessary information to check the integrity, decrypt and, if necessary, drop a message before forwarding it to the constrained mote. Our approach preserves precious resources of IoT devices in the face of path-based denial-of-service attacks by remote attackers.