Fast visual object tracking via distortion-suppressed correlation filtering

Tianyang Xu, Xiaojun Wu
{"title":"Fast visual object tracking via distortion-suppressed correlation filtering","authors":"Tianyang Xu, Xiaojun Wu","doi":"10.1109/ISC2.2016.7580837","DOIUrl":null,"url":null,"abstract":"Visual object tracking is a basic research unit in the construction of smart cities, it focuses on establishing a dynamic appearance model to represent the target in complex scenarios. In this paper, a distortion-suppressed correlation filtering based tracking method (DSCFT) is proposed. Our approach tackles distortions caused by spatial similarity comparison and temporal appearance updating. We establish our method under a Bayesian framework, where spatial and temporal appearance are embedded in likelihood and prior respectively. Firstly, The spatial distortion is handled by modifying weight windows and utilizing a proposal selection strategy to better track targets under fast motion and background clutters. Secondly, temporal information is retained in updating stage as a prior to represent dynamic variations of the target. Moreover, a multi-scale filtering scheme is integrated when updating the temporal appearance to boost the scale sensitivity. Experimental results dedicate the effectiveness and robustness of our DSCFT on benchmark videos.","PeriodicalId":171503,"journal":{"name":"2016 IEEE International Smart Cities Conference (ISC2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2016.7580837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Visual object tracking is a basic research unit in the construction of smart cities, it focuses on establishing a dynamic appearance model to represent the target in complex scenarios. In this paper, a distortion-suppressed correlation filtering based tracking method (DSCFT) is proposed. Our approach tackles distortions caused by spatial similarity comparison and temporal appearance updating. We establish our method under a Bayesian framework, where spatial and temporal appearance are embedded in likelihood and prior respectively. Firstly, The spatial distortion is handled by modifying weight windows and utilizing a proposal selection strategy to better track targets under fast motion and background clutters. Secondly, temporal information is retained in updating stage as a prior to represent dynamic variations of the target. Moreover, a multi-scale filtering scheme is integrated when updating the temporal appearance to boost the scale sensitivity. Experimental results dedicate the effectiveness and robustness of our DSCFT on benchmark videos.
通过扭曲抑制相关滤波快速视觉目标跟踪
视觉目标跟踪是智慧城市建设中的一个基础研究单元,它侧重于建立一个动态的外观模型来表示复杂场景下的目标。本文提出了一种基于失真抑制相关滤波的跟踪方法(DSCFT)。我们的方法解决了由空间相似性比较和时间外观更新引起的扭曲。我们在贝叶斯框架下建立了我们的方法,其中空间和时间外观分别嵌入在似然和先验中。首先,在快速运动和背景杂波的情况下,通过修改权值窗口和建议选择策略来处理空间畸变,从而更好地跟踪目标;其次,在更新阶段保留时间信息作为先验来表示目标的动态变化;此外,在更新时间外观时,还集成了多尺度滤波方案,提高了尺度敏感性。实验结果证明了该方法在基准视频上的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信