Finding high-probability mobile photography routes between origin and destination endpoints

T. Phan
{"title":"Finding high-probability mobile photography routes between origin and destination endpoints","authors":"T. Phan","doi":"10.1145/2675316.2675322","DOIUrl":null,"url":null,"abstract":"A challenge for mobile smartphone photographers is finding the best route to take interesting photos given origin and destination constraints. To solve this problem, we leveraged crowd-sourced geotagged photographs in order to build a model that can generate the highest-probability route between two geolocation endpoints. Our implemented system comprises discretizing the geocoordinate space, determining popular geolocations, computing Markov transition probabilities, and finally generating highest-probability end-to-end routes by solving a shortest path problem where edge probabilities are converted into edge distances. The experimental results show the impact of path length and spatial resolution on the prediction accuracy of our system.","PeriodicalId":229456,"journal":{"name":"International Workshop on Mobile Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Mobile Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2675316.2675322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A challenge for mobile smartphone photographers is finding the best route to take interesting photos given origin and destination constraints. To solve this problem, we leveraged crowd-sourced geotagged photographs in order to build a model that can generate the highest-probability route between two geolocation endpoints. Our implemented system comprises discretizing the geocoordinate space, determining popular geolocations, computing Markov transition probabilities, and finally generating highest-probability end-to-end routes by solving a shortest path problem where edge probabilities are converted into edge distances. The experimental results show the impact of path length and spatial resolution on the prediction accuracy of our system.
在起点和终点之间寻找高概率的移动摄影路线
移动智能手机摄影师面临的一个挑战是,在给定出发地和目的地的限制下,找到拍摄有趣照片的最佳路线。为了解决这个问题,我们利用众包的地理标记照片来构建一个模型,该模型可以生成两个地理位置端点之间的最高概率路径。我们实现的系统包括离散地理坐标空间,确定流行的地理位置,计算马尔可夫转移概率,最后通过解决最短路径问题生成最高概率的端到端路由,其中边缘概率转换为边缘距离。实验结果表明了路径长度和空间分辨率对系统预测精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信