Sparse least mean fourth adaptive algorithm for censored regression

Bing Chen, Haiquan Zhao, Yingying Zhu
{"title":"Sparse least mean fourth adaptive algorithm for censored regression","authors":"Bing Chen, Haiquan Zhao, Yingying Zhu","doi":"10.1117/12.2588927","DOIUrl":null,"url":null,"abstract":"In the linear systems, the conventional least mean fourth (LMF) algorithm has faster convergence and lower steady-state error than LMS algorithm, However, in many applications, the censored observations occur frequently. In this paper, a least mean fourth (LMF) algorithm with censored regression is proposed for adaptive filtering. When the identified system possesses a certain extent of sparsity, the least mean fourth algorithm for Censored Regression (CRLMF) algorithm may encounter performance degradation. Therefore, a reweighted zero-attracting LMF algorithm based on the censored regression model (RZA-CRLMF) is proposed further. Simulations are carried out in system identification and echo cancellation scenarios. The results verify the effectiveness of the proposed CRLMF and RZA-CRLMF algorithms. Moreover, in sparse system, the RZA-CRLMF algorithm improves further the filter performance in terms of the convergence speed and the mean squared deviation for the presence of sub-Gaussian noise.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2588927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the linear systems, the conventional least mean fourth (LMF) algorithm has faster convergence and lower steady-state error than LMS algorithm, However, in many applications, the censored observations occur frequently. In this paper, a least mean fourth (LMF) algorithm with censored regression is proposed for adaptive filtering. When the identified system possesses a certain extent of sparsity, the least mean fourth algorithm for Censored Regression (CRLMF) algorithm may encounter performance degradation. Therefore, a reweighted zero-attracting LMF algorithm based on the censored regression model (RZA-CRLMF) is proposed further. Simulations are carried out in system identification and echo cancellation scenarios. The results verify the effectiveness of the proposed CRLMF and RZA-CRLMF algorithms. Moreover, in sparse system, the RZA-CRLMF algorithm improves further the filter performance in terms of the convergence speed and the mean squared deviation for the presence of sub-Gaussian noise.
截尾回归的稀疏最小平均四次自适应算法
在线性系统中,传统的最小平均四次(LMF)算法比LMS算法具有更快的收敛速度和更小的稳态误差,但在许多应用中经常出现截除观测值。本文提出了一种带截尾回归的最小平均四次(LMF)自适应滤波算法。当识别的系统具有一定程度的稀疏性时,截尾回归(CRLMF)算法的最小平均四次算法可能会出现性能下降。因此,进一步提出了一种基于截尾回归模型的重加权零吸引LMF算法(RZA-CRLMF)。在系统识别和回波消除场景下进行了仿真。实验结果验证了所提出的CRLMF和RZA-CRLMF算法的有效性。此外,在稀疏系统中,RZA-CRLMF算法在收敛速度和亚高斯噪声存在的均方差方面进一步提高了滤波性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信