Two-Dimensional Numerical Simulation of Vortex Shedding of Multiple Stranded Ropes

Xinxin Wang, Liu-yi Huang, Yanli Tang, F. Zhao, Peng Sun
{"title":"Two-Dimensional Numerical Simulation of Vortex Shedding of Multiple Stranded Ropes","authors":"Xinxin Wang, Liu-yi Huang, Yanli Tang, F. Zhao, Peng Sun","doi":"10.1115/omae2019-95225","DOIUrl":null,"url":null,"abstract":"\n The stranded rope is one of the important components of the fishery aquaculture equipment. We investigate the fluid flow through two-dimensional stranded rope by direct simulation of the Navier-Stokes equations. We show that for different kinds of stranded rope structures, there are significant differences in hydrodynamic performance. This paper established a numerical model of unsteady flow past the stranded rope based on the Navier-Stokes equation and Morison formulas to study the hydrodynamic characteristics of three-stranded rope, four-stranded rope, and seven-stranded rope, respectively. The turbulence flow was simulated using Standard k-ε model and Shear-Stress Transport k-ω (SST) model. The flow distribution strongly depends on the Reynolds number, a range of 3,900 and 30,000. With increasing Reynolds number, the alternate eddy formation and shedding were repeated behind the stranded ropes. Such parameters of hydrodynamic characteristics of multiple stranded ropes were calculated as the lift and drag coefficients, and vortex shedding frequencies. The numerical simulation results presented flow performances of different cross sections (a, b, c, d) at different Reynolds numbers. However, Reynolds number has no significant impact on the Strouhal number for the same attack angle of the stranded rope.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The stranded rope is one of the important components of the fishery aquaculture equipment. We investigate the fluid flow through two-dimensional stranded rope by direct simulation of the Navier-Stokes equations. We show that for different kinds of stranded rope structures, there are significant differences in hydrodynamic performance. This paper established a numerical model of unsteady flow past the stranded rope based on the Navier-Stokes equation and Morison formulas to study the hydrodynamic characteristics of three-stranded rope, four-stranded rope, and seven-stranded rope, respectively. The turbulence flow was simulated using Standard k-ε model and Shear-Stress Transport k-ω (SST) model. The flow distribution strongly depends on the Reynolds number, a range of 3,900 and 30,000. With increasing Reynolds number, the alternate eddy formation and shedding were repeated behind the stranded ropes. Such parameters of hydrodynamic characteristics of multiple stranded ropes were calculated as the lift and drag coefficients, and vortex shedding frequencies. The numerical simulation results presented flow performances of different cross sections (a, b, c, d) at different Reynolds numbers. However, Reynolds number has no significant impact on the Strouhal number for the same attack angle of the stranded rope.
多股绳索涡旋脱落的二维数值模拟
绞绳是渔业养殖设备的重要组成部分之一。通过直接模拟Navier-Stokes方程,研究了流体在二维绞绳中的流动。研究表明,对于不同类型的绞绳结构,其水动力性能存在显著差异。本文基于Navier-Stokes方程和Morison公式建立了非定常流过绳数值模型,分别研究了三股绳、四股绳和七股绳的水动力特性。湍流流动采用标准k-ε模型和剪切应力输运k-ω (SST)模型进行模拟。流动分布很大程度上依赖于雷诺数,范围为3900 ~ 30000。随着雷诺数的增加,双绞索后反复发生涡流的形成和脱落。计算了多股绳索的升力系数、阻力系数和旋涡脱落频率等水动力特性参数。数值模拟结果显示了不同雷诺数下不同截面(a、b、c、d)的流动特性。而对于相同攻角的绞索,雷诺数对斯特劳哈尔数的影响不显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信