Dynamic Online Pricing with Incomplete Information Using Multi-Armed Bandit Experiments

Kanishka Misra, Eric M. Schwartz, Jacob D. Abernethy
{"title":"Dynamic Online Pricing with Incomplete Information Using Multi-Armed Bandit Experiments","authors":"Kanishka Misra, Eric M. Schwartz, Jacob D. Abernethy","doi":"10.2139/ssrn.2981814","DOIUrl":null,"url":null,"abstract":"We propose an alternative dynamic price experimentation policy that extends multiarmed bandit (MAB) algorithms from statistical machine learning to include microeconomic choice theory.","PeriodicalId":321987,"journal":{"name":"ERN: Pricing (Topic)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Pricing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2981814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

Abstract

We propose an alternative dynamic price experimentation policy that extends multiarmed bandit (MAB) algorithms from statistical machine learning to include microeconomic choice theory.
基于多臂强盗实验的不完全信息动态在线定价
我们提出了一种替代的动态价格实验策略,将统计机器学习中的多武装强盗(MAB)算法扩展到包括微观经济选择理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信