Efficient Discovery of Confounders in Large Data Sets

Wenjun Zhou, Hui Xiong
{"title":"Efficient Discovery of Confounders in Large Data Sets","authors":"Wenjun Zhou, Hui Xiong","doi":"10.1109/ICDM.2009.77","DOIUrl":null,"url":null,"abstract":"Given a large transaction database, association analysis is concerned with efficiently finding strongly related objects. Unlike traditional associate analysis, where relationships among variables are searched at a global level, we examine confounding factors at a local level. Indeed, many real-world phenomena are localized to specific regions and times. These relationships may not be visible when the entire data set is analyzed. Specially, confounding effects that change the direction of correlation is the most significant. Along this line, we propose to efficiently find confounding effects attributable to local associations. Specifically, we derive an upper bound by a necessary condition of confounders, which can help us prune the search space and efficiently identify confounders. Experimental results show that the proposed CONFOUND algorithm can effectively identify confounders and the computational performance is an order of magnitude faster than benchmark methods.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Given a large transaction database, association analysis is concerned with efficiently finding strongly related objects. Unlike traditional associate analysis, where relationships among variables are searched at a global level, we examine confounding factors at a local level. Indeed, many real-world phenomena are localized to specific regions and times. These relationships may not be visible when the entire data set is analyzed. Specially, confounding effects that change the direction of correlation is the most significant. Along this line, we propose to efficiently find confounding effects attributable to local associations. Specifically, we derive an upper bound by a necessary condition of confounders, which can help us prune the search space and efficiently identify confounders. Experimental results show that the proposed CONFOUND algorithm can effectively identify confounders and the computational performance is an order of magnitude faster than benchmark methods.
大型数据集中混杂因素的有效发现
对于大型事务数据库,关联分析关注的是高效地查找强相关对象。与传统的关联分析不同,在全局层面上搜索变量之间的关系,我们在局部层面上检查混淆因素。事实上,许多现实世界的现象都局限于特定的地区和时间。当分析整个数据集时,这些关系可能不可见。特别地,改变相关方向的混淆效应是最显著的。沿着这条线,我们建议有效地发现可归因于地方关联的混淆效应。具体地说,我们根据混杂的必要条件推导出了一个上界,这可以帮助我们修剪搜索空间,有效地识别混杂。实验结果表明,该算法能够有效地识别混杂因素,计算性能比基准方法快一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信