{"title":"Anonymizing Temporal Data","authors":"Ke Wang, Yabo Xu, R. C. Wong, A. Fu","doi":"10.1109/ICDM.2010.96","DOIUrl":null,"url":null,"abstract":"Temporal data are time-critical in that the snapshot at each timestamp must be made available to researchers in a timely fashion. However, due to the limited data, each snapshot likely has a skewed distribution on sensitive values, which renders classical anonymization methods not possible. In this work, we propose the “reposition model” to allow a record to be published within a close proximity of original timestamp. We show that reposition over a small proximity of timestamp is sufficient for reducing the skewness of a snapshot, therefore, minimizing the impact on window queries. We formalize the optimal reposition problem and present a linear-time solution. The contribution of this work is that it enables classical methods on temporal data.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Temporal data are time-critical in that the snapshot at each timestamp must be made available to researchers in a timely fashion. However, due to the limited data, each snapshot likely has a skewed distribution on sensitive values, which renders classical anonymization methods not possible. In this work, we propose the “reposition model” to allow a record to be published within a close proximity of original timestamp. We show that reposition over a small proximity of timestamp is sufficient for reducing the skewness of a snapshot, therefore, minimizing the impact on window queries. We formalize the optimal reposition problem and present a linear-time solution. The contribution of this work is that it enables classical methods on temporal data.