Parallelized Linear Classification with Volumetric Chemical Perceptrons

Christopher E. Arcadia, Hokchhay Tann, Amanda Dombroski, Kady Ferguson, S. Chen, Eunsuk Kim, Christopher Rose, B. Rubenstein, S. Reda, J. Rosenstein
{"title":"Parallelized Linear Classification with Volumetric Chemical Perceptrons","authors":"Christopher E. Arcadia, Hokchhay Tann, Amanda Dombroski, Kady Ferguson, S. Chen, Eunsuk Kim, Christopher Rose, B. Rubenstein, S. Reda, J. Rosenstein","doi":"10.1109/ICRC.2018.8638627","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a new type of linear classifier that is implemented in a chemical form. We propose a novel encoding technique which simultaneously represents multiple datasets in an array of microliter-scale chemical mixtures. Parallel computations on these datasets are performed as robotic liquid handling sequences, whose outputs are analyzed by highperformance liquid chromatography. As a proof of concept, we chemically encode several MNIST images of handwritten digits and demonstrate successful chemical-domain classification of the digits using volumetric perceptrons. We additionally quantify the performance of our method with a larger dataset of binary vectors and compare the experimental measurements against predicted results. Paired with appropriate chemical analysis tools, our approach can work on increasingly parallel datasets. We anticipate that related approaches will be scalable to multilayer neural networks and other more complex algorithms. Much like recent demonstrations of archival data storage in DNA, this work blurs the line between chemical and electrical information systems, and offers early insight into the computational efficiency and massive parallelism which may come with computing in chemical domains.","PeriodicalId":169413,"journal":{"name":"2018 IEEE International Conference on Rebooting Computing (ICRC)","volume":"109 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2018.8638627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this work, we introduce a new type of linear classifier that is implemented in a chemical form. We propose a novel encoding technique which simultaneously represents multiple datasets in an array of microliter-scale chemical mixtures. Parallel computations on these datasets are performed as robotic liquid handling sequences, whose outputs are analyzed by highperformance liquid chromatography. As a proof of concept, we chemically encode several MNIST images of handwritten digits and demonstrate successful chemical-domain classification of the digits using volumetric perceptrons. We additionally quantify the performance of our method with a larger dataset of binary vectors and compare the experimental measurements against predicted results. Paired with appropriate chemical analysis tools, our approach can work on increasingly parallel datasets. We anticipate that related approaches will be scalable to multilayer neural networks and other more complex algorithms. Much like recent demonstrations of archival data storage in DNA, this work blurs the line between chemical and electrical information systems, and offers early insight into the computational efficiency and massive parallelism which may come with computing in chemical domains.
体积化学感知器的并行线性分类
在这项工作中,我们介绍了一种以化学形式实现的新型线性分类器。我们提出了一种新的编码技术,可以同时表示微升尺度化学混合物阵列中的多个数据集。对这些数据集进行并行计算作为机器人液体处理序列,其输出通过高效液相色谱分析。作为概念证明,我们对手写数字的几个MNIST图像进行了化学编码,并使用体积感知器成功地演示了数字的化学域分类。我们还用一个更大的二进制向量数据集量化了我们的方法的性能,并将实验测量结果与预测结果进行了比较。与适当的化学分析工具配对,我们的方法可以在越来越多的并行数据集上工作。我们预计相关的方法将可扩展到多层神经网络和其他更复杂的算法。就像最近在DNA中存储档案数据的演示一样,这项工作模糊了化学和电子信息系统之间的界限,并提供了对化学领域计算可能带来的计算效率和大规模并行性的早期见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信