Image steganography using discrete fractional Fourier transform

A. Soni, J. Jain, R. Roshan
{"title":"Image steganography using discrete fractional Fourier transform","authors":"A. Soni, J. Jain, R. Roshan","doi":"10.1109/ISSP.2013.6526882","DOIUrl":null,"url":null,"abstract":"The Fractional Fourier transform (FrFT), as a generalization of the classical Fourier transform, was introduced many years ago in mathematics literature. For the enhanced computation of fractional Fourier transform, discrete version of FrFT came into existence i.e. DFrFT. This paper illustrates the advantage of discrete fractional Fourier transform (DFrFT) as compared to other transforms for steganography in image processing. The simulation result shows same PSNR in both domain (time and frequency) but DFrFT gives an advantage of additional stego key i.e. order parameter of this transform.","PeriodicalId":354719,"journal":{"name":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","volume":"37 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSP.2013.6526882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

The Fractional Fourier transform (FrFT), as a generalization of the classical Fourier transform, was introduced many years ago in mathematics literature. For the enhanced computation of fractional Fourier transform, discrete version of FrFT came into existence i.e. DFrFT. This paper illustrates the advantage of discrete fractional Fourier transform (DFrFT) as compared to other transforms for steganography in image processing. The simulation result shows same PSNR in both domain (time and frequency) but DFrFT gives an advantage of additional stego key i.e. order parameter of this transform.
使用离散分数傅里叶变换的图像隐写
分数阶傅里叶变换(FrFT)是对经典傅里叶变换的一种推广,多年前就在数学文献中被提出。为了增强分数阶傅里叶变换的计算能力,出现了离散版本的傅里叶变换,即DFrFT。本文阐述了离散分数傅里叶变换(DFrFT)在图像处理中与其他隐写变换相比的优势。仿真结果表明,时域和频域的PSNR相同,但DFrFT的优点是增加了隐进键,即该变换的阶参量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信