A high_performance steganographic method using JPEG and PSO algorithm

S. Fazli, M. Kiamini
{"title":"A high_performance steganographic method using JPEG and PSO algorithm","authors":"S. Fazli, M. Kiamini","doi":"10.1109/INMIC.2008.4777716","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel method to embed secret message in the cover-image so that the interceptors will not notice about the existence of the hidden data. The basic concept of the proposed method is by simple Least Significant Bit (LSB) substitution. In order to improve the quality of stego-image and to increase the secret message capacity and security level, we inspire by the work of Li and Wang which splits the cover-image into n blocks of 8 times 8 pixels and the secret message into n partitions. Then we apply Particle Swarm Optimization (PSO) algorithm to search approximate optimal solutions and to find an optimal substitution matrix for transforming the secret message in each block, instead of finding only one optimal substitution matrix for the whole cover-image as in. The quality of the resulting stegoimage, the secret message capacity and the security level of the proposed method are calculated and compared to other methods. Experimental results show that the proposed method outperforms the JPEG and Quantization Table Modification (JQTM) method and the Li and Wang's work in image quality, embedding capacity and security level.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, we present a novel method to embed secret message in the cover-image so that the interceptors will not notice about the existence of the hidden data. The basic concept of the proposed method is by simple Least Significant Bit (LSB) substitution. In order to improve the quality of stego-image and to increase the secret message capacity and security level, we inspire by the work of Li and Wang which splits the cover-image into n blocks of 8 times 8 pixels and the secret message into n partitions. Then we apply Particle Swarm Optimization (PSO) algorithm to search approximate optimal solutions and to find an optimal substitution matrix for transforming the secret message in each block, instead of finding only one optimal substitution matrix for the whole cover-image as in. The quality of the resulting stegoimage, the secret message capacity and the security level of the proposed method are calculated and compared to other methods. Experimental results show that the proposed method outperforms the JPEG and Quantization Table Modification (JQTM) method and the Li and Wang's work in image quality, embedding capacity and security level.
一种基于JPEG和粒子群算法的高性能隐写方法
在本文中,我们提出了一种将秘密信息嵌入封面图像的新方法,使拦截器不会注意到隐藏数据的存在。该方法的基本概念是通过简单的最低有效位(LSB)替换。为了提高隐写图像的质量,增加密文容量和安全级别,我们借鉴Li和Wang的工作,将封面图像分成8 × 8像素的n个块,将密文分成n个分区。然后应用粒子群优化算法(PSO)搜索近似最优解,并找到一个最优替换矩阵来转换每个块中的秘密消息,而不是像在整个覆盖图像中只找到一个最优替换矩阵。计算了所提方法的隐写图像质量、秘密信息容量和安全级别,并与其他方法进行了比较。实验结果表明,该方法在图像质量、嵌入容量和安全级别上都优于JPEG和量化表修改(JQTM)方法以及Li和Wang的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信