Alireza Rohani, H. Kerkhoff, Enrico Costenaro, D. Alexandrescu
{"title":"Pulse-length determination techniques in the rectangular single event transient fault model","authors":"Alireza Rohani, H. Kerkhoff, Enrico Costenaro, D. Alexandrescu","doi":"10.1109/SAMOS.2013.6621125","DOIUrl":null,"url":null,"abstract":"One of the well-known models to represent Single Event Transient phenomenon at the logic-level is the rectangular pulse model. However, the pulse-length in this model has a vital contribution to the accuracy and validity of the rectangular pulse model. The work presented in this paper develops two approaches for determination of the pulse-length of the rectangular pulse model used in Single Event Transient (SET) faults. The first determination approach has been extracted from radiation testing along with transistor-level SET analysis tools. The second determination approach has been elicited from asymptotic analytical behaviour of SETs in 45-nm CMOS process. The results show that applying these two pulse-length determination approaches to the rectangular pulse model will cause the fault injection results converge much faster (up to sixteen times), compared to other conventional approaches.","PeriodicalId":382307,"journal":{"name":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2013.6621125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
One of the well-known models to represent Single Event Transient phenomenon at the logic-level is the rectangular pulse model. However, the pulse-length in this model has a vital contribution to the accuracy and validity of the rectangular pulse model. The work presented in this paper develops two approaches for determination of the pulse-length of the rectangular pulse model used in Single Event Transient (SET) faults. The first determination approach has been extracted from radiation testing along with transistor-level SET analysis tools. The second determination approach has been elicited from asymptotic analytical behaviour of SETs in 45-nm CMOS process. The results show that applying these two pulse-length determination approaches to the rectangular pulse model will cause the fault injection results converge much faster (up to sixteen times), compared to other conventional approaches.