MDL-based Genetic Programming for Object Detection

Yingqiang Lin, B. Bhanu
{"title":"MDL-based Genetic Programming for Object Detection","authors":"Yingqiang Lin, B. Bhanu","doi":"10.1109/CVPRW.2003.10062","DOIUrl":null,"url":null,"abstract":"In this paper, genetic programming (GP) is applied to synthesize composite operators from primitive operators and primitive features for object detection. To improve the efficiency of GP, smart crossover, smart mutation and a public library are proposed to identify and keep the effective components of composite operators. To prevent code bloat and avoid severe restriction on the GP search, a MDL-based fitness function is designed to incorporate the size of composite operator into the fitness evaluation process. The experiments with real synthetic aperture radar (SAR) images show that compared to normal GP, GP algorithm proposed here finds effective composite operators more quickly.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, genetic programming (GP) is applied to synthesize composite operators from primitive operators and primitive features for object detection. To improve the efficiency of GP, smart crossover, smart mutation and a public library are proposed to identify and keep the effective components of composite operators. To prevent code bloat and avoid severe restriction on the GP search, a MDL-based fitness function is designed to incorporate the size of composite operator into the fitness evaluation process. The experiments with real synthetic aperture radar (SAR) images show that compared to normal GP, GP algorithm proposed here finds effective composite operators more quickly.
基于mdl的目标检测遗传规划
本文将遗传规划(GP)应用于原语算子和原语特征合成复合算子进行目标检测。为了提高遗传算法的效率,提出了智能交叉、智能突变和公共库来识别和保留复合算子的有效成分。为了防止代码膨胀和避免对GP搜索的严重限制,设计了一个基于mdl的适应度函数,将复合算子的大小纳入适应度评估过程。在真实合成孔径雷达(SAR)图像上的实验表明,与常规GP算法相比,本文提出的GP算法能更快地找到有效的复合算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信