An accident prediction approach based on XGBoost

Xuehuai Shi, Qianmu Li, Yong Qi, Tiantian Huang, Jianmei Li
{"title":"An accident prediction approach based on XGBoost","authors":"Xuehuai Shi, Qianmu Li, Yong Qi, Tiantian Huang, Jianmei Li","doi":"10.1109/ISKE.2017.8258806","DOIUrl":null,"url":null,"abstract":"As an important threat to public security, urban fire accident causes huge economic loss and catastrophic collapse. Predicting and analyzing the interior rule of urban fire accident from its appearance needed to be solved in the field. In this paper, we propose a new urban fire accident prediction approach based on XGBoost. The method determines the predictive indexes in a quantitative and qualitative way from different characteristics in various kinds of fire accidents. For screening the features we need, we adopt the feature selection algorithm based on association rules. For data cleaning, we use a method based on Box-Cox transformation that transforms the continual response variables from the feature space for removing the dependencies on unobservable errors and the predictor variable to some extent. Then we use the data to train the model based on XGBoost to obtain the best prediction accuracy. Experiments show that the method provides a feasible solution to urban fire accident prediction. The method contributes to improving the public security situation, we have added the method and related model to the City in a box™, Shenzhen Aerospace Smart City System Technology Co., Ltd.","PeriodicalId":208009,"journal":{"name":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2017.8258806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

As an important threat to public security, urban fire accident causes huge economic loss and catastrophic collapse. Predicting and analyzing the interior rule of urban fire accident from its appearance needed to be solved in the field. In this paper, we propose a new urban fire accident prediction approach based on XGBoost. The method determines the predictive indexes in a quantitative and qualitative way from different characteristics in various kinds of fire accidents. For screening the features we need, we adopt the feature selection algorithm based on association rules. For data cleaning, we use a method based on Box-Cox transformation that transforms the continual response variables from the feature space for removing the dependencies on unobservable errors and the predictor variable to some extent. Then we use the data to train the model based on XGBoost to obtain the best prediction accuracy. Experiments show that the method provides a feasible solution to urban fire accident prediction. The method contributes to improving the public security situation, we have added the method and related model to the City in a box™, Shenzhen Aerospace Smart City System Technology Co., Ltd.
基于XGBoost的事故预测方法
城市火灾事故作为公共安全的重要威胁,造成巨大的经济损失和灾难性的崩溃。从火灾发生的表象出发,预测和分析城市火灾事故的内部规律,是现场需要解决的问题。本文提出了一种基于XGBoost的城市火灾事故预测新方法。该方法根据各类火灾事故的不同特点,定量和定性地确定预测指标。为了筛选我们需要的特征,我们采用了基于关联规则的特征选择算法。对于数据清理,我们使用基于Box-Cox变换的方法,该方法从特征空间变换连续响应变量,以在一定程度上消除对不可观察误差和预测变量的依赖。然后利用这些数据对基于XGBoost的模型进行训练,以获得最佳的预测精度。实验表明,该方法为城市火灾事故预测提供了一种可行的解决方案。该方法有助于改善公共安全状况,我们将该方法和相关模型添加到深圳航天智慧城市系统科技有限公司的“盒中之城”™中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信