Simulating and Analyzing aggressive car-following behavior for testing autonomous vehicles

Li Tang, Abhishek Gupta, Ziyi Liu, Chunming Qiao, Qing He
{"title":"Simulating and Analyzing aggressive car-following behavior for testing autonomous vehicles","authors":"Li Tang, Abhishek Gupta, Ziyi Liu, Chunming Qiao, Qing He","doi":"10.1093/iti/liac022","DOIUrl":null,"url":null,"abstract":"\n In a mixed traffic flow, evaluating the operation safety of autonomous vehicles (AVs) is crucial under different aggressive car-following behavior of surrounding human driven-vehicles (HVs). To pursue this goal, this paper develops a machine-learning-based simulation method accompanied by a traditional car-following model. We integrate the unsupervised learning method, Approximate Bayesian computation, and Gipps car-following model to obtain different parameter distributions of the Gipps model. After utilizing the key parameter distribution, this paper employs a supervised learning method to predict the aggressive index of human-driven vehicles in each individual car-following event. Further, we verify the outputs of this simulation model with the NGSIM I-80 traffic dataset. After the validation, we develop an AV simulation study to analyze Avs’ performance in different aggressive HVs scenarios. The result indicates that the higher penetration rate of AV is essential for stabilizing AVs’ performance in terms of velocity and the probability of involving in a crash. Additionally, aggressive HV drivers significantly impact scenarios of low AV penetration rate regarding safety issues.","PeriodicalId":191628,"journal":{"name":"Intelligent Transportation Infrastructure","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Transportation Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/iti/liac022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a mixed traffic flow, evaluating the operation safety of autonomous vehicles (AVs) is crucial under different aggressive car-following behavior of surrounding human driven-vehicles (HVs). To pursue this goal, this paper develops a machine-learning-based simulation method accompanied by a traditional car-following model. We integrate the unsupervised learning method, Approximate Bayesian computation, and Gipps car-following model to obtain different parameter distributions of the Gipps model. After utilizing the key parameter distribution, this paper employs a supervised learning method to predict the aggressive index of human-driven vehicles in each individual car-following event. Further, we verify the outputs of this simulation model with the NGSIM I-80 traffic dataset. After the validation, we develop an AV simulation study to analyze Avs’ performance in different aggressive HVs scenarios. The result indicates that the higher penetration rate of AV is essential for stabilizing AVs’ performance in terms of velocity and the probability of involving in a crash. Additionally, aggressive HV drivers significantly impact scenarios of low AV penetration rate regarding safety issues.
针对自动驾驶汽车测试的侵略性尾随行为仿真与分析
在混合交通流中,评估自动驾驶汽车在周围人类驾驶车辆不同侵略性跟车行为下的运行安全性至关重要。为了实现这一目标,本文开发了一种基于机器学习的仿真方法,并结合传统的汽车跟随模型。我们将无监督学习方法、近似贝叶斯计算和Gipps汽车跟随模型相结合,得到了Gipps模型的不同参数分布。在利用关键参数分布的基础上,采用监督学习的方法预测每个单独跟车事件中人类驾驶车辆的攻击性指数。此外,我们用NGSIM I-80交通数据集验证了该模拟模型的输出。在验证之后,我们进行了一项自动驾驶汽车仿真研究,以分析自动驾驶汽车在不同侵袭性HVs场景下的性能。结果表明,提高自动驾驶汽车的突防率对于稳定自动驾驶汽车的速度性能和碰撞概率至关重要。此外,在自动驾驶汽车普及率较低的情况下,咄咄逼人的HV司机会对安全问题产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信