Fuzzy random auto-regression time series model in enrollment university forecasting

R. Efendi, N. Samsudin, N. Arbaiy, M. M. Deris
{"title":"Fuzzy random auto-regression time series model in enrollment university forecasting","authors":"R. Efendi, N. Samsudin, N. Arbaiy, M. M. Deris","doi":"10.1109/ISCBI.2017.8053545","DOIUrl":null,"url":null,"abstract":"The statistical models required the large data in the time series forecasting. While, to forecast the limited data or small data cannot be suggested by using these models. In this paper, we are interested to apply fuzzy random auto-regression model to handle the university enrollment data. The accuracy of the forecasting model can be improved through the left-right procedure. The yearly enrollment data of Alabama University are examined as benchmark data to evaluate the performance of proposed model. The results indicate that the smaller left-right spread of triangular fuzzy number produced the higher forecasting accuracy if compared with the existing models.","PeriodicalId":128441,"journal":{"name":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","volume":"99 36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2017.8053545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The statistical models required the large data in the time series forecasting. While, to forecast the limited data or small data cannot be suggested by using these models. In this paper, we are interested to apply fuzzy random auto-regression model to handle the university enrollment data. The accuracy of the forecasting model can be improved through the left-right procedure. The yearly enrollment data of Alabama University are examined as benchmark data to evaluate the performance of proposed model. The results indicate that the smaller left-right spread of triangular fuzzy number produced the higher forecasting accuracy if compared with the existing models.
模糊随机自回归时间序列模型在高校招生预测中的应用
统计模型在时间序列预测中需要大量的数据。然而,这些模型不能用于有限数据或小数据的预测。本文研究了模糊随机自回归模型在高校招生数据处理中的应用。通过左-右过程可以提高预测模型的准确性。以阿拉巴马大学的年度招生数据为基准,对所提出的模型的性能进行了评估。结果表明,与现有模型相比,三角模糊数的左右差越小,预测精度越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信