An improved medical image fusion approach using PCA and complex wavelets

Himanshi, V. Bhateja, Abhinav Krishn, Akanksha Sahu
{"title":"An improved medical image fusion approach using PCA and complex wavelets","authors":"Himanshi, V. Bhateja, Abhinav Krishn, Akanksha Sahu","doi":"10.1109/MEDCOM.2014.7006049","DOIUrl":null,"url":null,"abstract":"Medical image fusion facilitates the retrieval of complementary information from medical images for diagnostic purposes. This paper presents a combination of Principal Component Analysis (PCA) and Dual Tree Complex Wavelet (DTCWT) as an improved fusion approach for MR and CT-scan images. Unlike real valued discrete wavelet transforms, DTCWT provides shift invariance and improved directionality along with preservation of spectral content. The decomposed images are then processed using PCA a based fusion rule to improve upon the resolution and reduce the redundancy. Simulation results demonstrate an improvement in visual quality of the fused image supported by higher values of fusion metrics; this further justifies the effectiveness of the proposed approach in comparison to other approaches.","PeriodicalId":246177,"journal":{"name":"2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEDCOM.2014.7006049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Medical image fusion facilitates the retrieval of complementary information from medical images for diagnostic purposes. This paper presents a combination of Principal Component Analysis (PCA) and Dual Tree Complex Wavelet (DTCWT) as an improved fusion approach for MR and CT-scan images. Unlike real valued discrete wavelet transforms, DTCWT provides shift invariance and improved directionality along with preservation of spectral content. The decomposed images are then processed using PCA a based fusion rule to improve upon the resolution and reduce the redundancy. Simulation results demonstrate an improvement in visual quality of the fused image supported by higher values of fusion metrics; this further justifies the effectiveness of the proposed approach in comparison to other approaches.
基于PCA和复小波的医学图像融合方法
医学图像融合有助于从医学图像中检索用于诊断目的的互补信息。本文提出了一种结合主成分分析(PCA)和双树复小波(DTCWT)的改进MR和ct图像融合方法。与实值离散小波变换不同,DTCWT提供平移不变性和改进的方向性以及保留频谱内容。然后使用基于PCA的融合规则对分解后的图像进行处理,以提高分辨率并减少冗余。仿真结果表明,较高的融合度量值可以提高融合图像的视觉质量;这进一步证明,与其他办法相比,拟议的办法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信