{"title":"Design & Implementation of Real-time Parallel GA Operators on the IBM Cell Processor","authors":"P. Comte","doi":"10.1145/1569901.1596275","DOIUrl":null,"url":null,"abstract":"We present a set of single-core designed parallel SIMD Genetic Algorithm (GA) operators aimed at increasing computational speed of genetic algorithms. We use a discrete-valued chromosome representation. The explored operators include: single gene mutation, uniform crossover and a fitness evaluation function. We discuss their low-level hardware implementations on the Cell Processor. We use the Knapsack problem as a proof of concept, demonstrating performances of our operators. We measure the scalability in terms of generations per second. Using the architecture of the Cell Processor and a static population size of 648 individuals, we achieved 11.6 million generations per second on one Synergetic Processing Element (SPE) core for a problem size n = 8 and 9.5 million generations per second for a problem size n = 16. Generality for a problem size n multiple of 8 is also shown. Executing six independent concurrent GA runs, one per SPE core, allows for a rough overall estimate of 70 million generations per second and 57 million generations per second for problem sizes of n = 8 and n = 16 respectively.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1596275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a set of single-core designed parallel SIMD Genetic Algorithm (GA) operators aimed at increasing computational speed of genetic algorithms. We use a discrete-valued chromosome representation. The explored operators include: single gene mutation, uniform crossover and a fitness evaluation function. We discuss their low-level hardware implementations on the Cell Processor. We use the Knapsack problem as a proof of concept, demonstrating performances of our operators. We measure the scalability in terms of generations per second. Using the architecture of the Cell Processor and a static population size of 648 individuals, we achieved 11.6 million generations per second on one Synergetic Processing Element (SPE) core for a problem size n = 8 and 9.5 million generations per second for a problem size n = 16. Generality for a problem size n multiple of 8 is also shown. Executing six independent concurrent GA runs, one per SPE core, allows for a rough overall estimate of 70 million generations per second and 57 million generations per second for problem sizes of n = 8 and n = 16 respectively.