Dynamic mean-CVaR portfolio optimization in continuous-time

Jianjun Gao, Y. Xiong
{"title":"Dynamic mean-CVaR portfolio optimization in continuous-time","authors":"Jianjun Gao, Y. Xiong","doi":"10.1109/ICCA.2013.6565128","DOIUrl":null,"url":null,"abstract":"The conditional value-at-risk(CVaR) is defined as the expected value of the tail distribution exceeding Value-at-Risk(VaR). As a kind of risk measure, CVaR recently receives much attention from both academic field and financial industry. However, due to the tractability, most of the studies on mean-CVaR portfolio optimization are restricted to the static portfolio analysis, where only buy-and-hold portfolio policy is computed numerically. In this paper, we study the dynamic portfolio policy of the mean-CVaR portfolio model, in which the investor is allowed to adjust the investment policy dynamically to minimize the CVaR of the portfolio as well as keep certain level of the expected return. On recognizing the ill-posed nature of such a problem in continuous-time model, we modify the model by imposing the limited funding level as the upper bound of the wealth. By using the martingale approach, we develop the explicit portfolio policy and mean-CVaR efficient frontier for such a problem.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The conditional value-at-risk(CVaR) is defined as the expected value of the tail distribution exceeding Value-at-Risk(VaR). As a kind of risk measure, CVaR recently receives much attention from both academic field and financial industry. However, due to the tractability, most of the studies on mean-CVaR portfolio optimization are restricted to the static portfolio analysis, where only buy-and-hold portfolio policy is computed numerically. In this paper, we study the dynamic portfolio policy of the mean-CVaR portfolio model, in which the investor is allowed to adjust the investment policy dynamically to minimize the CVaR of the portfolio as well as keep certain level of the expected return. On recognizing the ill-posed nature of such a problem in continuous-time model, we modify the model by imposing the limited funding level as the upper bound of the wealth. By using the martingale approach, we develop the explicit portfolio policy and mean-CVaR efficient frontier for such a problem.
连续时间动态均值- cvar组合优化
条件风险值(CVaR)定义为尾部分布的期望值超过风险值(VaR)。CVaR作为一种风险度量,近年来受到了学术界和金融界的广泛关注。然而,由于其可追溯性,大多数关于平均cvar投资组合优化的研究仅限于静态投资组合分析,其中仅对买入持有投资组合策略进行数值计算。本文研究了均值-CVaR组合模型的动态投资策略,该模型允许投资者动态调整投资策略,使投资组合的CVaR最小化,同时保持一定水平的预期收益。在认识到这类问题在连续时间模型中的病态性质后,我们通过将有限的资金水平作为财富的上界来修改模型。利用鞅方法,给出了该类问题的显式投资组合策略和均值- cvar有效边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信