{"title":"Complex Permittivity Extraction Method of a Thin Coating: EM Properties of a Graphene- Based Film on a Composite Layer","authors":"A. Tamburrano, F. Marra, J. Lecini, M. S. Sarto","doi":"10.1109/EMCEUROPE.2018.8485038","DOIUrl":null,"url":null,"abstract":"In the design of innovative nanomaterials for electromagnetic (EM) field absorption and shielding a crucial issue is the experimental characterization of the complex effective permittivity of non-uniform layered materials or electrically thin lossy layers. This paper proposes a technique to retrieve the complex relative permittivity of a thin lossy coating supported by a dielectric substrate through transmission/reflection measurements in a rectangular waveguide. A 2-port network de-embedding method is applied to remove the EM contribution of the substrate, and the so obtained scattering parameters of the film are used in the modified Nicolson- Ross-Weir algorithm to extract the complex permittivity. The method, validated by simulations, is applied to characterize a glass-fiber reinforced composite coated with a thin coating made of graphene nanoplatelets (GNPs)-polymer composite. Finally, the reflection properties of radar absorbing panels, constituted by several bilayers of GNP-coated GFRC are investigated in the range 12.4-18 GHz.","PeriodicalId":376960,"journal":{"name":"2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEUROPE.2018.8485038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In the design of innovative nanomaterials for electromagnetic (EM) field absorption and shielding a crucial issue is the experimental characterization of the complex effective permittivity of non-uniform layered materials or electrically thin lossy layers. This paper proposes a technique to retrieve the complex relative permittivity of a thin lossy coating supported by a dielectric substrate through transmission/reflection measurements in a rectangular waveguide. A 2-port network de-embedding method is applied to remove the EM contribution of the substrate, and the so obtained scattering parameters of the film are used in the modified Nicolson- Ross-Weir algorithm to extract the complex permittivity. The method, validated by simulations, is applied to characterize a glass-fiber reinforced composite coated with a thin coating made of graphene nanoplatelets (GNPs)-polymer composite. Finally, the reflection properties of radar absorbing panels, constituted by several bilayers of GNP-coated GFRC are investigated in the range 12.4-18 GHz.