A Statistical Learning Framework for QoS Prediction in V2X

M. Gutierrez-Estevez, Z. Utkovski, A. Kousaridas, Chan Zhou
{"title":"A Statistical Learning Framework for QoS Prediction in V2X","authors":"M. Gutierrez-Estevez, Z. Utkovski, A. Kousaridas, Chan Zhou","doi":"10.1109/5GWF52925.2021.00084","DOIUrl":null,"url":null,"abstract":"Managing QoS is one of the most critical and challenging aspects for connected and automated driving to be accepted in reality, as pre-agreed QoS Key-Performance-Indicators (KPIs) such as throughput, latency, and packet delivery ratio may not be guaranteed at all times. Enabling notifications with QoS predictions to vehicle applications presents a way to act upon potential QoS degradation. This, in turn, will make possible to improve overall system reliability while enhancing safety of connected and automated driving. To meet the V2X requirements and deliver QoS prediction with accuracy information, this paper proposes a prediction framework that combines a channel prediction model that maps contextual information into prediction of channel characteristics, with a statistical learning model that delivers QoS prediction with statistical guarantees.","PeriodicalId":226257,"journal":{"name":"2021 IEEE 4th 5G World Forum (5GWF)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF52925.2021.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Managing QoS is one of the most critical and challenging aspects for connected and automated driving to be accepted in reality, as pre-agreed QoS Key-Performance-Indicators (KPIs) such as throughput, latency, and packet delivery ratio may not be guaranteed at all times. Enabling notifications with QoS predictions to vehicle applications presents a way to act upon potential QoS degradation. This, in turn, will make possible to improve overall system reliability while enhancing safety of connected and automated driving. To meet the V2X requirements and deliver QoS prediction with accuracy information, this paper proposes a prediction framework that combines a channel prediction model that maps contextual information into prediction of channel characteristics, with a statistical learning model that delivers QoS prediction with statistical guarantees.
V2X中QoS预测的统计学习框架
管理QoS是连接和自动驾驶在现实中被接受的最关键和最具挑战性的方面之一,因为预先商定的QoS关键性能指标(kpi),如吞吐量、延迟和数据包传送率可能无法始终得到保证。向车辆应用程序启用带有QoS预测的通知提供了一种针对潜在QoS降级采取行动的方法。反过来,这将有可能提高整体系统的可靠性,同时提高联网和自动驾驶的安全性。为了满足V2X需求并提供具有精度信息的QoS预测,本文提出了一种预测框架,该框架将将上下文信息映射到信道特征预测的信道预测模型与提供具有统计保证的QoS预测的统计学习模型相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信