Reducción de la dimensión de registros de evaluaciones académicas aplicando el algoritmo K-means

V. Padilla-Morales, Saturnino Job Morales Escobar, Maricela Quintana, J. Albino, Oscar Herrera-Alcántara
{"title":"Reducción de la dimensión de registros de evaluaciones académicas aplicando el algoritmo K-means","authors":"V. Padilla-Morales, Saturnino Job Morales Escobar, Maricela Quintana, J. Albino, Oscar Herrera-Alcántara","doi":"10.13053/rcs-148-7-39","DOIUrl":null,"url":null,"abstract":"In an educational environment there is a huge data quantity, this data can be analyzed, and it can be used in decision making process. Nowadays data tends to be more complex due to the size than conventional data and need dimension reduction. Educational Data M ining lets using Data Mining techniques for analyzing academic information in order to identify patterns that are not evident. This article presents results obtained in a research of a case of study where regard the academic performance of undergraduate students of Engineering of the Centro Universitario UAEM Valle de México. In the data analysis is used the Kmeans algorithm, WEKA and R Studio. We propose the use of Clustering to reduce the dimension of academic variables based on their grade registers getting during last periods then we work with some average measure of in order to predict the academic performance of a student. It is used R Studio for contrast the Clusteres obtained by WEKA.","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/rcs-148-7-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In an educational environment there is a huge data quantity, this data can be analyzed, and it can be used in decision making process. Nowadays data tends to be more complex due to the size than conventional data and need dimension reduction. Educational Data M ining lets using Data Mining techniques for analyzing academic information in order to identify patterns that are not evident. This article presents results obtained in a research of a case of study where regard the academic performance of undergraduate students of Engineering of the Centro Universitario UAEM Valle de México. In the data analysis is used the Kmeans algorithm, WEKA and R Studio. We propose the use of Clustering to reduce the dimension of academic variables based on their grade registers getting during last periods then we work with some average measure of in order to predict the academic performance of a student. It is used R Studio for contrast the Clusteres obtained by WEKA.
应用K-means算法减少学术评估记录的维度
在教育环境中有一个巨大的数据量,这些数据可以分析,并可以用于决策过程。目前,由于数据的大小比传统数据更复杂,需要降维。教育数据挖掘允许使用数据挖掘技术来分析学术信息,以便识别不明显的模式。本文介绍了在一个研究案例的研究中获得的结果,该研究涉及到阿联酋中央大学工程专业本科生的学业成绩。在数据分析中使用了Kmeans算法、WEKA和R Studio。我们建议使用聚类来降低学术变量的维度,基于他们在上一阶段的成绩记录,然后我们使用一些平均测量来预测学生的学习成绩。它是用R Studio来对比由WEKA获得的cluster。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信